
Quantitative Research
Modeling Library

Final Project Report

Team

sdMay19-06

Team Members
Josiah Anderson -- Meeting Facilitator

Doh Yun Kim -- Scribe
Gabriel Klein -- Report Manager

Drake Mossman -- Communication Manager
Jacob Richards -- Quality Assurance

Nathan Schaffer -- Overseer

Client
Joseph Byrum

(Principal Financial Group)

Advisor
Srikanta Tirthapura

Contact

sdmay19-06@iastate.edu
https://sdmay19-06.sd.ece.iastate.edu

Last Updated
29 April 2019

https://sdmay19-06.sd.ece.iastate.edu/

Table of Contents

Table of Contents 1

List of Figures 3

List of Tables 4

Executive Summary 5

1 Requirements Specification 6
1.1 Functional Requirements 6
1.2 Non-Functional Requirements 6

2 Development Process 6
2.1 Chosen Process 6
2.2 Rationale 7

3. Design Plan 8
3.1 Use Cases 8
3.2 Design Process 8
3.3 Big-Picture Design 9
3.4 Design Objectives, Constraints, and Trade-offs 10
3.5 Implementation and Technologies Used 12

3.5.1 Implementation Diagram 12
3.5.2 Technologies and Software Used 12
3.5.3 Rationale for Technology and Software Choices 13

3.6 Modules 13
3.6.1 Aggregation 14
3.6.2 Predictions 14
3.6.3 Stock Scoring 15
3.6.4 Database 16

3.7 Applicable Standards and Best Practices 17

4. Test Plan 18
4.1 Overall Plan 18
4.2 Unit Testing 18
4.3 Interface Testing 19

1

4.4 System Integration Testing 19
4.5 Use Case Testing 19

5 Testing Evaluation 19
5.1 Test Case Evaluation 19
5.2 Validation and Verification 20

6 Project Management 21
6.1 Roles and Responsibilities 21
6.2 Project Schedule 22
6.3 Risk and Mitigation 24
6.4 Lessons Learned 26

7 Conclusions 27
7.1 Closing Remarks 27
7.2 Future Work 27

References 29

Appendix A: Team Information 30
Josiah Anderson 30
Doh Yun Kim 30
Gabriel Klein 31
Drake Mossman 31
Jacob Richards 32
Nathan Schaffer 32

2

List of Figures
Figure 1: DRP 2.0 System Architecture Diagram
Figure 2: Implementation Diagram
Figure 3: Aggregation Module Diagram
Figure 4: Predictions Module Diagram
Figure 5: Stock Scoring Module Diagram
Figure 6: Database Schemas and Relationships

3

List of Tables
Table 1: Aggregation Benchmarking Results
Table 2: Project Schedule Planned Version
Table 3: Project Schedule Actual Outcome
Table 4: Risk Description Chart
Table 5: Risk Consequences Mapping
Table 6: Risk Likelihood Mapping
Table 7: Risk Mapping from Likelihood and Consequence to Severity
Table 8: Risk Severity Mapping

4

Executive Summary
The Global Equities Team at Principal Financial uses a process for developing stock
performance prediction models called the Dynamic Risk Premium or DRP. Our team was tasked
with evaluating the current state of the DRP from a software engineering perspective, and to
develop potential solutions to the shortcomings that are present in the Dynamic Risk Premium.
Through a thorough investigation into the process, and a series of interviews with users of the
DRP at Principal, we have discovered three major areas that could be improved: consistency,
efficiency, and transparency. Multiple projects are currently working on the DRP from across the
country, which leads to inconsistencies in the interfaces between different modules of the
process. Also, each time a potential user wants to implement a new model with the Dynamic
Risk Premium they must start from scratch which leads to inefficiency and redundant coding.
Finally, the way the current DRP process works is a black box to most observers which leads to
confusion about what is really going on under the hood.

We worked with members of the Principal team to develop a solution to these problems that we
will refer to as the DRP 2.0. The DRP 2.0 is a library of Python functions and classes that work
together to give structure, standardization, and reusability to the quantitative research pipeline
at Principal. Certain points of this pipeline have been intentionally exposed for extensibility using
Abstract Base Classes in python. Once the user has implemented the necessary components,
they can then generate a script that will import the DRP 2.0 library and call the functions for
each module of the pipeline. Each of these functions then saves its output data in the
appropriate table within a postgreSQL database on server managed by the team at Principal.

This design plan increases efficiency and consistency by providing an implemented function for
factor portfolio aggregation to be used throughout Principal’s research teams. Through the use
of abstract base classes it also produces clarity in the interfaces between modules of the
process. Since, the results from each stage of the pipeline are stored in the database, Power BI
dashboards can be used to visualize what is being accomplished throughout the pipeline. This
will address the need for transparency that currently exists in the Dynamic Risk Premium
process.

5

1 Requirements Specification

1.1 Functional Requirements
1. The pipeline will consume raw stock level data from an AWS Postgres database
2. The pipeline will be able to aggregate data to factor portfolios
3. The pipeline will be able to build models on factor portfolios, generate predictions, and

calculate model performance
4. The pipeline will be able to score stocks using a factor policy
5. The pipeline will be able to simulate portfolio returns
6. Users will be able to customize the stock universe, factor portfolio strategies, model

algorithms, and factor policy of the DRP 2.0 pipeline
7. Each function of the pipeline shall be able to be called and run independently
8. The pipeline will be able to handle missing or invalid stock level data
9. It will be able to interface with the DRP 2.0 dashboards

1.2 Non-Functional Requirements
1. (​Performance​) The pipeline will be able to handle up to several GB of data
2. (​Performance​) The pipeline should be able to handle millions of observations and

hundreds of factors
3. (​Maintainability​) The pipeline will have documented and standardized inputs and outputs

for each of its functions and interfaces
4. (​Usability​) The pipeline interfaces will be intuitive to a novice data scientist
5. (​Accessibility​) The pipeline will be useable by novice programmers
6. (​Security​) The pipeline will not leak confidential data to outside sources
7. (​Compatibility​) The pipeline will be able to perform the same functionality as provided

existing scripts
8. (​Transparency​) Individual runs of the pipeline will be able to be traced back to their

inputs along with the modules used for that particular run

2 Development Process

2.1 Chosen Process
The process we used was closest to an agile development process. The key points of Agile we
adopted into our development process were early and continuous feedback from the customer,

6

a constantly reprioritized Kanban board, face-to-face interactions, and a product vision
statement to drive goal-oriented thinking.

Our vision statement grew in formality and precision as we understood the project domain more
and were able to better articulate the end goal we were striving for, yet it kept the same core
mentality through the entirety of the project: We want to provide Principal’s Quant Research
team with a tool that standardizes interfaces and helps avoid work duplication while anticipating
future changes to aid in efficient and fast development of predictive equity models. While our
ideas about the presentation and implementation of this project changed many times over the
months we worked on it, this end-goal mentality helped keep us centered.

We used GitLab’s Kanban-style issue board to manage tasks. This central location for
documenting progress, future improvements, and even technical issues, which we added a
section for, was vital to our success. Even before we were able to start writing working code, it
helped us think of how we could take small steps toward our end goal and keep each other
accountable to that. Early on, the tasks we made included interviews and other investigative
efforts to help us grasp Principal’s workflow and inefficiencies. Then as we started making our
initial prototypes, we were able to break up tasks to assign to each of our members, putting the
responsibility on them to update their own progress as they worked.

Within the first week of having a project assignment, we also began to set up weekly
face-to-face amongst our team to review our progress as well as weekly meetings with our
clients at Principal to get feedback and make sure we were on the right track. While it wasn’t
easy to coordinate so many busy and conflicting schedules to this extent, the result was worth it.
These meetings were an essential time for us to realign our short-term goals with each other
and with the team at Principal while also communicating about potential new risks or obstacles
we foresaw. Because of the uncertain nature of our project, we anticipated the need to deliver
multiple iterations of code to our client for feedback, which we planned for in our Gantt chart and
followed through with throughout our process. The constant feedback we were able to get in
return was what allowed us to have as successful a project as we did.

2.2 Rationale
The Waterfall method is sequential and structured. The development process is broken up into
phases and development on the next phase doesn’t begin until the current phase is finished.
Because this method is very rigid and structured, the scope and requirements of the project
don’t change once development starts.

On the other hand, the Agile method is flexible. The development process for this method is
iterative, this means that planning, development, testing, or other development phases may
appear multiple times. Because phases can appear more than once, requirements are prone to
change throughout the project lifecycle.

7

We chose the Agile process because of our awareness of the many unknowns and risks in our
project. At the beginning of our first semester of senior design, none of our team had any
experience with data science, the financial market, or the quantitative research methods
Principal was using in this Dynamic Risk Premium 2.0 venture. This high level of uncertainty
would have made a more linear process such as waterfall project management infeasible.
Instead, with our more iterative project management approach, we came up with concrete,
short-term tasks from the very beginning to help us as quickly as possible get up to speed with
this entirely new domain and project.

3. Design Plan

3.1 Use Cases
1. A user wishes to aggregate a factor portfolio from a database of raw stock level data
2. A user wishes to train a predictive model based on a factor portfolio for predicting stock

returns over various periods
3. A user wishes to score stocks’ relative performance based on the predicted stock returns

of a factor portfolio
4. A user wishes to run the entire pipeline to score the universe of stocks starting with a list

of parameters for factor portfolios
5. A user wishes to visualize data from previous runs of the pipeline through an interface

with the database
6. A user wishes to trace back a particular run of the pipeline to find out what factor

portfolios, models, factor policies, and stock scorers were used.

3.2 Design Process
Our team began our design process by spending a significant amount of time researching our
client’s situation to establish their needs. We were all completely new to almost everything data
science related, so we carried out several interviews with our client’s employees to build our
understanding of the circumstances we were designing a solution for. Once we’d aggregated
the results of our interviews we discovered that our client has a workflow in serious need of
automation for the less skilled employees, as well as for the many students and interns they
work with. Specifically it would be helpful if we could automate any of the following tasks:

- Retrieving and formatting data
- Preprocessing data for the model
- Constructing accurate predictive models
- Postprocessing the model for validation
- Visualizing the result
- Storing data in a database for diagnostics

8

Along with automation, another feature employees desired was modularity. The employees we
interviewed wanted to be able to separate the different stages of their process from each other
as well as standardize the interfaces between them for ease with diagnostics and future
development.

At this point we began to conceptualize possible solutions for our client’s problems. We drafted
a few proposals and communicated back and forth with our client several times through web
conferences as well as in-person meetings to solidify our understanding of the necessary data
science concepts as well as our concept of what the project should look like. We went through
several prototype concepts before we landed on our current vision of what we now call the
Dynamic Risk Premium (DRP) 2.0 pipeline.

3.3 Big-Picture Design
Our big-picture design for the pipeline is a 3-layer architecture split perpendicularly by 4
separate modules with different purposes. See Figure 1 where each horizontal row represents
one layer of the architecture and each color represents a different module with its own purpose.

Figure 1: DRP 2.0 System Architecture Diagram

The processing layer of the architecture and the highest row in the diagram is a library that runs
locally on the user’s computer. This layer is where all of the data processing happens from
aggregating factor portfolios to making models to predicting stock returns to scoring the
universe of stocks. This layer can almost run entirely independently from the rest of the
architecture, except for it needing the initial raw stock level data from the database (in the data
layer) to get started.

9

The data layer of the architecture is the database along with all of its schemas and views. The
database will contain all of the raw stock level data needed for the data processing to consume.
This data is expected to come from FactSet, a service providing financial data for our client.
Additionally it will provide a space to save and load intermediate results as represented by the
several arrows back and forth between the two layers. This will allow for partial runs of the
pipeline as well as the ability to inspect said intermediate results.

Finally, the visualization layer of the architecture consists of the dashboards and other
interfaces our client would like to use to inspect and visualize the data in the database. This
layer will not be implemented by us, but we will need to provide the interfaces through which this
layer can interact with the data layer.

Now discussing the vertical slices of the pipeline, we split it up into three major sections:
Aggregation, Predictions, and Scoring. Each of these will be discussed in more detail in the
modules section below, but we give a brief description of each here as well.

The aggregation section takes care of aggregating raw stock level data to factor portfolios. The
predictions section trains models based on the portfolios and makes predictions on future stock
returns. Finally, the scoring section decides on a factor policy for the portfolios and then scores
the universe of stocks according to that policy. Each module also stores the outputs of each
operation in the data layer as they’re calculated.

Since each of these three major modules are decoupled as much as possible, they will be
available to run individually as well as as a group. The database will store the outputs of each
stage so that any later stage can pick up where the others left off at any time and with any data.
On the other hand, the modules will also return their results locally in code as well so that the
pipeline doesn’t need to waste time storing and then immediately retrieving results.

3.4 Design Objectives, Constraints, and Trade-offs
Our design objectives all stem from our vision statement: to provide Principal’s Quant Research
team with a tool that standardizes interfaces and helps avoid work duplication while anticipating
future changes to aid in efficient and fast development of predictive equity models. We break
down our more specific objectives for this tool into four primary categories: convenience,
traceability, modularity, and adaptability.

One of the primary motivating factors for the DRP 2.0 project is that, previously, data scientists
in Principal’s Quantitative Research group often would end up using up a significant amount of
time duplicating efforts for common tasks in their research of effective predictive equity models.
For example, no matter what stage of that process they are working on, it is necessary to
aggregate raw stock-level data into portfolio-level descriptive statistics. This often meant that
each researcher would have to customize and tweak their own version of this same logic

10

because of a lack of standardization amongst the group. Our goal for the tool we provide them
is that it would provide the convenience of code-reuse that only standardization can afford.
Therefore, one of the most important tasks in our development was the standardization of inputs
and outputs within the DRP 2.0 pipeline.

Additionally, our clients wanted a high level of traceability at each stage of the pipeline, allowing
them to notice problems and have sufficient information to diagnose their cause. This would be
helpful both in the developmental stage and in the production stage of the pipeline. In
development, when predictive models and optimal scoring algorithms are first being created,
researchers can use the stored inputs and outputs to test their code and verify its accuracy.
Then, in production, when predictions on the very uncertain realm of equity data are inevitably
less precise than desired, maintainers can verify that this is not due to an error in their
algorithms.

Our third design objective, modularity, is important because it can ensure that researchers are
able to focus on development of their specific modules without spending time worrying about the
other stages of the pipeline. Having an effectively-modular pipeline means having low coupling
between modules, ensuring the breaks between modules are at logical points, and thoroughly
documenting the interfaces between them. Together, these three work to ensure that
researchers can easily use components created by other members of their team, swapping
them out with ease to ultimately achieve the convenience in development which we described
previously.

Finally, our design must be adaptable so that it can continue use as future changes occur. This
is essential, because the Quant Research team that is acting as our client is a very new team,
and their processes and methods are certain to change over time. If our work becomes obsolete
within a year of completion, it would have been a waste of our time and a waste of our client’s
time. Therefore, all parameters to our tool have to be made as flexible as possible to anticipate
future diversification in methodologies. Furthermore, since we can’t fully anticipate all changes
that could occur, we have to hand off the code to Principal in a way that they are able to read,
understand, and modify it as needed.

The only rigid constraints on our software were in terms of the operation environment and data.
Principal provided us with a Postgres database of raw stock data that had been pre-populated
from FactSet, an subscription-based equity data provider. Our program has to consume that
data in the form it was given to us and interface with that database as appropriate. Furthermore,
since that database resides on an AWS server which we were given access to by Principal, our
tool also needed to be able to run in that environment. This meant that any additional packages
that our tool depended on would need to be set up in that context. Though these constraints
defined the initial operation environment for our project, ideally our project should be easily
portable to other similar settings.

11

One of the trade-offs we had to make during development was the balance between
intensively-thorough documentation and feature-dense software. This tradeoff primarily came in
the last months of our project. At that point we knew of a plethora of changes which could
improve our package but knew that the greater value to our client ultimately was to provide them
sufficiently-detailed documentation for what had already been accomplished. Additionally, in
making this decision, we were able to document future changes we foresaw so that they would
be able to pick up development and make those changes themselves if they desired.

A second tradeoff we considered in our project was the level of abstraction of our function calls
and classes. Early on, we had thoughts of creating a library of more, smaller functions for typical
data-manipulation tasks. As our project came into a more concrete form, we settled on a higher
level of abstraction. This abstraction can have a downside of causing more difficulty for a user of
our library in understanding what our code is doing and how to integrate with it. It also
introduces more rigidity in the flow of data that could require a larger amount of rework of
current code in order to realize usage of our package. Nonetheless, this higher abstraction level
afforded us the ability to not get bogged down by the details of data science to which our team
was not very familiar, but rather focus on structuring the flow of data logically from a high level.

3.5 Implementation and Technologies Used

3.5.1 Implementation Diagram

Figure 2: Implementation Diagram

3.5.2 Technologies and Software Used
We chose to implement the processing layer as a Python package. This package then
represents the DRP 2.0 pipeline and is imported into scripts as one uses its many classes and
functions. We connected from local machines to the data layer over SSH connections.

We were given access to an AWS server by our client with a PostgreSQL database already set
up, so we chose to use it as our data layer.

12

Finally, our visualization layer exists only as a concept as the moment, but we know it will
consist of at least PowerBI dashboards. We used materialized views in our data layer to provide
an interface for any visualization tools our client chooses.

3.5.3 Rationale for Technology and Software Choices
For our processing layer, our main choice was between the two languages Python and R. We
ended up going with Python for the following reasons:

- Our client’s employees we spoke with were familiar with Python.
- We were more comfortable with it of the two.
- It’s one of the easier programming languages to learn and work with for new

programmers.
- It has existing data science tools and packages we can make use of that our client

already uses.

The last point was really what helped motivate us to use Python. Utilizing Python gave us the
ability to work with packages like Numpy and Pandas which our client already relies heavily
upon in their current scripts. While R also has plenty of support for data science uses, by using
the same language and packages as our client, we were able to more easily communicate ideas
and translate between their scripts and ours with little effort. Python is also just a great general
purpose language. It is lightweight, requires very little overhead for the code, and it is also used
in the data science field. All this combined makes using Python as our language of choice for
our project perfect.

As for our data layer, because we were given a server and database already set up and ready
to go with all the necessary data, we had little reason to switch to any other alternative.
Additionally our client makes use of AWS servers and PostgreSQL for their current projects, so
it made perfect sense to stick with that choice.

While we didn’t need to make any implementation choices for the visualization layer, we did
decide on using materialized views to give the dashboards access to the data in the data layer.
We made this decision as opposed to regular views so that the calculations necessary to
visualize the data would only have to be run once for the dashboards to use them. A regular
view would have required the data layer to reassemble the data each time.

3.6 Modules
What follows is a brief description of each of the modules that make up the entirety of the DRP
2.0 pipeline.

13

3.6.1 Aggregation
The aggregation module is in charge of aggregating raw stock level data into factor portfolios
that are both saved in the database and consumed by other modules of the pipeline. Because
these portfolios are being saved in the database, it also checks to see if the requested portfolio
has already been made before so it can reload it instead of re-aggregating it.

The module expects a description of what factor portfolios are to be aggregated in the form of a
Factor Portfolio or Factor Portfolio Factory object as well as implementations of the abstract
base classes for preprocessing or postprocessing if desired.

Once aggregation is complete, the module saves the results in the database for later reuse and
then outputs a set of aggregated factor portfolios as requested in the form of a list of Factor
Portfolio objects.

There are few constraints in this module other than that any requested data must actually exist
in the given database to be aggregated. The module will provide detailed errors should a user
make an invalid request.

The following figure shows the main flow of data internal to this module.

Figure 3: Aggregation Module Diagram

3.6.2 Predictions
The below Figure 4 is the design for the predictions step of the project. In this module, there are
are a number of models that are created by the user (matching the abstract class). The factor
portfolios are provided and the models will run with user provided inputs to output the
predictions for the factor portfolios.

The predictions modules works by accepting first the aggregated factor portfolios from the factor
aggregation step. From the accepted aggregated factor portfolio, the user then will provide the

14

necessary model inputs (different from model to model). With the inputs and factor portfolio, the
predicted data will be generated.

The constraints in this step are that we have used an abstract based class for the model
classes. Any model that is to be implemented here in this step must conform to this abstract
class. Depending on how the original model is implemented, there may or may not be troubles
in implementing the model to fit the abstract class. Another constraint here is currently the
abstract model class is assuming that the dates we are predicting, we are not outputting past
the end date. So the predictions will start at the start date of the given factor portfolio and end at
the provided date.

Figure 4: Predictions Module Diagram

3.6.3 Stock Scoring
The scoring stage is broken up into two parts: factor policy generation and stock scoring. Figure
5 below shows the inputs and outputs of the entire scoring stage. The scoring stage expects
aggregated factor portfolios as well as predicted values from the predictions step and outputs a
table of relative scores for each company at each time point.

The factor policy generation step essentially scores whole factors based on the predicted data
for their factor portfolios. It takes as input aggregated factor portfolios containing predicted
returns and uses those to create a factor policies table. This table contains relative weights for
each factor at each time point that sum to 1 for any given row. Higher weights are indicative of
greater predictive power for the corresponding factor at that time point. This stage is to be
implemented by data scientists at Principal and, in practice, is typically further segmented into
two internal stages as shown in Figure 5.

The second scoring step, called stock scoring, uses a factor policy and more raw stock data to
score individual stocks at each time point. This also is broken into two segments. First, the
database is queried to produce a table containing percentile rankings of each company for each
factor at each time point. This information is then provided, along with a factor policies table, to

15

the primary abstract function for stock scoring. This can be used, like all of the other abstract
classes we created, as an extension point for customizing functionality of the pipeline. However,
since there is a fairly standard and straightforward way this step is typically done, we also
provided a concrete implementation that can be used out of the box.

The generated factor policies and stock scores are all stored back in the database with links to
the factor portfolios and predicted data that served as their inputs. This provides full traceability
of the scoring stage.

Figure 5: Stock Scoring Module Diagram

3.6.4 Database
The database stores the information being passed along the pipeline from every step. This
allows for the user to easily diagnose issues since they are able to see the data at every step of
the pipeline. See figure 6 below.

Along with the multiple tables that are in the database, materialized views are also within the
database to help organize the data for easier implementation with Power BI dashboards.
Because the materialized views are able to store information, past data is easily accessible for
the user.

There are some constraints with the database. The materialized views can only give information
to the Power BI dashboards that is already in the database. Since the materialized views do not
currently have a trigger function, they must be manually refreshed with data whenever the user
wants to look at the most recent data. Also, anytime the schema is changed, the code must also
be changed so it can correctly insert the information in the new schema.

16

Figure 6: Database Schemas and Relationships

3.7 Applicable Standards and Best Practices
Our project used three standards from the start of the project. A standard related to the software
life cycle, a standard for test techniques, and a standard for validation. [1] - [3]

While we tried to use all these different standards for our project, due to time constraints and the
nature of our project, we could not completely follow these standards. Nevertheless, our group
made great strides in trying to use all of these standards.

The first standard we used was the IEEE Systems and software engineering--Software life cycle
processes. This standard was about the software life cycle process for the entire project. When
we started the project, we believed that this was a good standard to use because we were
creating a prototype for our client. Thus we thought that having a good grasp of the entire
software life cycle processes would be important to have a successful project.
Our project followed closely what this standard has stated. During our initial stage, we have
made great efforts to define all of our modules and processes. We had many Organizational
project-enabling processes to determine how certain parts should work in relation to what our
client wanted. Through constant communication we have accomplished this. Since our project
was focused on prototyping the DRP 2.0, the other stages of the software life cycle did not
matter as much to us. [1]

17

The second standard Software and systems engineering--Software testing--Part 4: Test
techniques, was useful to learn what test techniques we should use for our testing phase.
However, due to some changes to how we were doing testing, and changes to how we had to
take some testing out due to them not being available, we could not fully use all these
standards. We couldn’t efficiently use all the test techniques mentioned in this standard (that
would’ve unrealistic too), but for the testing we could do, we tried our best to make use of the
techniques mentioned in this standard. State Transition testing, syntax testing, data flow testing
were some of the techniques we successfully used. [2]

IEEE Standard for System, Software, and Hardware Verification and Validation, we used the vv
table as a guideline to create which processes, deliverables and modules were important to the
project. Through communication with our client and our own meetings, what we should focus on
was successfully made, so our verification step went well. In our validation step, we took steps
to validate the system analysis V&V process, Validation process, and Design Definition V&V
process. Due to the size of our team, we could not validate everything according to the
standards, our team made great efforts to do the verification and validation our team thought
was crucial to the success of our project. [3]

4. Test Plan

4.1 Overall Plan
Our testing plan for this project revolves mainly around our continuous integration setup. As
detailed in the following sections, we wrote unit tests, interface tests, and integration tests as we
developed the pipeline and placed them all in a testing suite that gets run by our continuous
integration server. This helps pinpoint where exactly some functionality was broken, as well as
protects the master branch of the project from ever being broken, because it won’t let you
merge unless all the tests are passing. We wrote the tests as we developed the features so that
we’d always know whenever something had broken.

For aggregation tests we made sure to get full option coverage over the important choices that
can be made such as aggregation type (Static/Dynamic) and return type (Absolute/Excess).

4.2 Unit Testing
For unit testing we wrote up a suite of tests for each of the 3 software based modules of the
project: Aggregation, Predictions, and Scoring. These tests mainly ensured the outputs of any
internal or intermediate functions were correct. We also added these tests to our continuous
integration suite of tests so that we would know immediately if we accidentally broke any piece
of functionality.

18

4.3 Interface Testing
For interface testing, we ensured that the outputs of each module were formatted correctly and
as expected. Most of the data we pass around in the pipeline is in the form of Pandas
dataframes, so we checked to make sure that the dataframe getting passed from module to
module always had the expected index and columns. Again, these tests were added to our
continuous integration system so that we’d know if someone ever violated the interface
contracts immediately.

4.4 System Integration Testing
Once each of the individual components of the pipeline were finished and passing their own unit
tests, integration tests were written to test their functionality as a cooperating system. In these
tests the entire pipeline was validated for correctness by running each of the high-level modules
sequentially and verifying key qualities about the data frames that were output by each. These
tests didn’t focus on specific data in any of the results, but rather invariant properties that should
be true regardless of raw data or starting parameters. Certain invariants like the relationships
between the input parameters and the column titles and row labels of the resulting dataframe
were tested at every stage. Other more specific tests were also used for individual stages, such
as the sum of the values in a row of the factor policies table summing to one.

4.5 Use Case Testing
For use case testing we packaged up our code at various stages of the process and let our
client attempt to use it. Then they would report back with information such as how easy or
difficult it was to use for their purposes as well as what kinds of changes they’d like to see that
would make it more useful for them. We went through this process both over emails and in
person at different times. In this way we discovered whether we’d successfully covered each
use case or if we needed to revisit certain ones and make it more clear how to use our code in
that way. We also did our best to reproduce realistic operating conditions when testing our code
ourselves in order to catch issues even before reaching this stage of testing.

5 Testing Evaluation

5.1 Test Case Evaluation
At of the end of our project, 100% of our various tests passed, from unit tests, to integration
tests, to interface tests, meaning that each module of the pipeline alone and integrated together
are functioning as intended.

19

On the other hand we benchmarked the aggregation module in specific since it’s the only
module we were to implement in its entirety, and we found that it is unfortunately slower than
their current method of aggregation. In addition, loading portfolios from the database takes
significantly longer than recalculating and aggregating manually. The issue stems from us not
having the time to optimize some sections of the pipeline in favor of adding more of the
architecture and features our client desired. Our client was more interested in the overall
architecture decisions and designs we as Software and Computer Engineers could bring to the
table instead of having us work on small data transformation optimizations. So while the
benchmarking results are somewhat disappointing, they are at least not too unexpected. The
results of running the aggregation module on 180 various requested factor portfolios are as
follows.

Interaction Level Time Taken (s) Time Taken (min) Avg. Time/Portfolio (s)

No DB Interaction 1735.47 28.9245 9.6415

DB Interaction,
Portfolios don’t exist

2041.70 34.0283 11.3428

DB Interaction,
Portfolios already exist

3401.00 56.6833 18.8944

Table 1: Aggregation Benchmarking Results

5.2 Validation and Verification
The results of our use case testing and otherwise validation of our end product were mostly
positive although not entirely so. We found that our final product did indeed cover the necessary
use cases, and our client was able to utilize the package effectively to accomplish their goals.
This we can consider a success.

On the other hand, our client brought up several valid concerns about the project throughout its
lifetime that were never able to be addressed for lack of time. Issues we didn’t consider
mandatory or severe such as reorganizing class members for clarity or switching to a preferred
format of dates and times were overlooked in favor of completing the project on time. Another
month or two of work would have been enough to implement many of these quality of life
changes, but as it stands, the project is only able to measure up to a minimum viable product
standard. As such, we can consider the project mostly a success despite some unfortunate
loose ends.

20

6 Project Management

6.1 Roles and Responsibilities
Josiah Anderson: ​Meeting Facilitator

● Created presentation material for weekly meetings with our client Principal Financial
● Led team, client and advisor meetings
● Set up the database schema
● Worked to establish the tables used for storing aggregated portfolio data
● Established a documentation protocol to be used throughout the project

Doh Yun Kim: ​Scribe

● Documented team meetings and meetings with Principal
● Led investigative interviews with Principal team members to establish areas of need
● Designed the schedule of work to be used by our team
● Worked closely with a member of the Principal team to create the predictions module of

the DRP 2.0 pipeline

Gabriel Klein: ​Report Manager
● Organized weekly reports
● Oversaw the completion of all the documentation required by the class
● Maintained the Gitlab issues board
● Designed the factor aggregation module of the DRP 2.0 pipeline
● Worked with Jacob to establish integration tests on our Continuous Integration server

Drake Mossman: ​Communications Manager

● Maintained constant communication with our client and advisor
● Developed the stock scoring module of the DRP 2.0 pipeline
● Created a schema and corresponding tables for storing stock scoring data
● Worked to integrate the individual pipeline modules
● Developed tests for integration

Jacob Richards: ​Quality Assurance

● Set up the Continuous Integration server
● Helped with knowledge interviews
● Developed materialized views to be consumed by external power BI dashboards
● Provided input on testing procedures

Nathan Schaffer: ​Overseer of Work

21

● Set up the Gitlab issues board to be used for managing tasks
● Worked with Drake to develop the stock scoring module
● Packaged the pipeline into a single Python package that can be easily imported

6.2 Project Schedule

Table 2: Project Schedule Planned Version

22

Table 3: Project Schedule Actual Outcome

During the first semester, our actual schedule and our projected schedule matched. During our
first semester, we were focused on figuring out what our client wanted and needed. We met our
goals in regards of keeping with the schedule. However starting the second semester our
schedule changed from the projected one.

When we were presenting our first prototype, the reviewing and refining phase of our first
prototype took longer than expected. Due to the fact our first prototype stage took so long, our
team forgone the second prototype phase and decided to start making changes to our first
prototype and focus on our final design. Our final design phase took longer than expected to
create. Multiple troubles in regards with trying to make our final design line up with the current
design we had. Due to the final design step taking a week longer than expected, our expected
testing stage took was delayed back to the start of April.

The types of testing we did also changed. Back when we first created gantt chart, we did not
have a clear plan for testing. After we got our actual design ironed out, we managed to get our
testing phase cleared out, and the actual testing we did was different from the ones we
planned. While we did have usability testing as one of the few tests we wanted to do for our
project, do to schedule conflicts with our client, we could not fit in usability testing into our
project.

In our original schedule, we had a three weeks as a risk buffer. This risk buffer we allocated for
ourselves became useful when our schedule didn’t confirm exactly to our original one. We

23

ended up using all three weeks of our risk buffer when our final design work took longer than
expected.

6.3 Risk and Mitigation

Table 4: Risk Description Chart

Table 5: Risk Consequences Mapping

24

Table 6: Risk Likelihood Mapping

 Consequence

Likelihood 1 2 3 4 5

A M S S H H

B L M S H H

C L M M S H

D L L M S H

E L L L M S

Table 7: Risk Mapping from Likelihood and Consequence to Severity

Table 8: Risk Severity Mapping

The above shows some of the risks we have planned out during our initial project plan of our
project. There were some risks that never came up. The risk regarding the PowerBI dashboards
never came up. The project on our client’s side never came far enough for our project to worry
about integrating with the PowerBI dashboards. Our first prototype was also well received. This
was important because due to our changed schedule, we did not have time to implement major
changes into a second prototype, and instead directly proceed into our final design based off
our first prototype. The R conversion risk never came up either because at the start of the spring
semester, our team has decided that converting our project to R was outside the scope of our
project, so we scaled back on that. So that risk became irrelevant.

25

For the risks that did came up, we feel that in our project, we did a decent job of dealing with all
the problems that came up in our way. The first risk, and the one we were always worrying
about during the beginning of the project was the misunderstanding of the pipeline process.
During the start of our project, our team did not understand the DRP process well, and we were
struggling with understanding it. This put us in trouble when designing some of the initial
modules. Our plan was to mitigate this risk through constant communication with our client, and
this worked out well. We had weekly meetings with Principal for the entirety of the project.
Through this constant communication, any misunderstandings we had were resolved early
instead of later.

When a team member got busy with other course work, or got stuck with a certain module or
process in our project, our team handled this by reshuffling work. The module nature of our
project made it so that having a team member being stuck or being busy will not impact the
entire project negatively. We have considered when starting our project, and this came to be
useful when we did get stuck and become busy. So we handled this risk well. Thanks to the
constant communication we had within our team throughout the entire project, our integration
step was not as worrisome as it was.

6.4 Lessons Learned
Over the course of this project, our team has a learned a few valuable lessons. The first lesson
we learned was the importance of establishing clear expectations and project guidelines early
on in the project. The first couple months of our project were very frustrating because we did not
have a lot of clarity as to what we were supposed to be developing as a team. To address this
issue, we interviewed members of the team at Principal to find areas where our software
engineering knowledge could be used to improve their workflow.

Another lesson we learned was the importance of constant communication. By nature of our
project being a prototype, the design plan changed a lot more than most projects. Because of
our constant communication with the team at Principal though, we were able to address these
changes as they came up instead of wasting time on a feature that was no longer important or
relevant to the project.

One more important lesson we learned was perseverance. In the beginning, our project seemed
was pretty overwhelming because of the lack of experience our team had with data science.
This led to a long process of learning what data science looks like at Principal, and how as
software engineers, we can contribute to the data science team. By the end of our project, our
knowledge of data science, although still far from complete, was more than sufficient for us to
complete this project.

26

7 Conclusions

7.1 Closing Remarks
In summary, our team was mostly successful in architecting a software solution for our client’s
needs in quantitative data science. The Python package and database design we created
allows for them to quickly and easily create and evaluate stock portfolios. The architecture is
also modular such that they are able to swap components in and out as abstract classes without
modifying the now standardized interfaces between stages. Finally the database keeps track of
the outputs of each portion of the pipeline and provides traceability for how and when different
stages were executed.

Our testing shows that our final product is reliable from a module level to a system level, and
our client was generally happy with the outcome of the project. Benchmarking shows that our
solution as it currently stands is somewhat slower than was expected, but there is still plenty of
room for optimizations to be made. As the first stage of their longer term project, our package is
only the first prototype, and it will help lay the foundation for other teams to iterate on in the
months to come.

7.2 Future Work
As a rough prototype of our client’s investigation into automating their quantitative data
processes, our project could certainly be taken in several directions for future work. We will
discuss a few of these options.

One big improvement that could be made is related to the efficiency of the aggregation portion
of the pipeline. Our current implementation was focused on extensibility, customizability, and
maintainability, so unfortunately the raw efficiency of the aggregation suffered a lack of
attention. This prototype pipeline could be made much more useful if some time was spent
finding optimizations in the aggregation of which we know several do exist. For example, many
portfolios share the same aggregated input factor data, but our pipeline processes each portfolio
individually, repeating the same work for each one. Exploiting these similarities is likely the
easiest speed boost to work towards from this point.

Another improvement that could be made is adding support for more of the input factors and
input predictors our client is currently using in their own code. One example is to add support for
using macro data as an input factor which should be as simple as querying the relevant
database table and appending the data alongside the rest of the inputs. There are also several
input predictors such as spread decile mean, spread decile standard deviation, spread universal
mean, and spread universal standard deviation that the pipeline doesn’t currently support.
These will require a little more doing to get working, but the necessary architecture exists to

27

perform a full query of all relevant raw stock level data and do whatever data transformations
desired on it.

Finally as with any database heavy project, support for parallelized calculations and
asynchronous server calls would greatly increase the speed of the pipeline. Currently all
database interactions are blocking, which wastes significant processing time. We suggest
finding ways to parallelize each module of the pipeline so that the all processor cores can be
kept busy at all times as well as finding ways to make database calls asynchronous so that the
processor is never just waiting for data to come back.

28

References
[1] Systems and software engineering -- Software life cycle processes,​ ISO/IEC/IEEE

12207:2017, 2017

[2] Software and systems engineering--Software testing--Part 4: Test techniques,

ISO/IEC/IEEE 29119-4:2015(E), 2015

[3] IEEE Standard for System, Software, and Hardware Verification and Validation, ​IEEE

1012:2016, 2017

29

Appendix A: Team Information

Josiah Anderson

Josiah is a Computer Engineering major and
our team's Meeting Facilitator. He's in charge
of setting up our meeting times and locations.
He also leads our meetings and puts together
great presentations when necessary.

His main contribution to the project was
working on our database, schemas, and views
along with Jacob Richards.

josiande@iastate.edu

Doh Yun Kim

DK is a Software Engineering major and our
team's Scribe. He's in charge of taking notes
during both our internal meetings and our
meetings with our client. He formats them all
nicely and posts them online for us to look
back over.

His main contribution to the project was
working on the modeling and predicting
portion of the pipeline.

dohyunk@iastate.com

30

mailto:josiande@iastate.edu
mailto:dohyunk@iastate.com

Gabriel Klein

Gabe is a Software Engineering major and our
team's Report Manager. He's in charge of
notifying the team of report deadlines and
making sure they get done on time. He
compiles and formats all the work once it's
done and then submits it or posts it on the
website.

His main contribution to the project was
working on the data aggregation of raw stock
level data to factor portfolios part of the
pipeline.

gabrielk@iastate.edu

Drake Mossman

Drake is a Software Engineering major and
our team's Communication Manager. He's in
charge of the communication with our client.
He writes up emails to our client and our
advisor as necessary and makes sure replies
are sent in a timely manner.

His main contribution to the project was
working on the factor policy and stock scoring
portion of the pipeline along with Nathan
Schaffer.

dmossman@iastate.edu

31

mailto:gabrielk@iastate.edu
mailto:dmossman@iastate.edu

Jacob Richards

Jacob is a Software Engineering major and our
team's Quality Assurance Manager. He's in
charge of the testing side of our project. He
makes sure tests are written for new code and
maintains the continuous integration systems.

His main contribution to the project was working
on our database, schemas, and views along
with Josiah Anderson.

jacobr17@iastate.edu

Nathan Schaffer

Nathan is a Computer Engineering major and
our team's Overseer. He's in charge of
assigning tasks to team members to get work
done efficiently. He prioritizes them to ensure
we avoid bottlenecks and to get client feedback
as soon as we can.

His main contribution to the project was working
on the factor policy and stock scoring portion of
the pipeline along with Drake Mossman.

nathans@iastate.edu

32

mailto:jacobr17@iastate.edu
mailto:nathans@iastate.edu

