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Getting Started 
To begin using the Dynamic Risk Premium 2.0 Pipeline (DRP) simply make sure the package is 
located somewhere on the python path and import it using the following line. 
 

 
 
Once imported, reference the other sections of this manual for information regarding the 
available functions and objects, or browse the well-commented code itself to understand the 
internal implementation. 

Aggregation 

Overview 
The aggregation module of the pipeline is where you can create factor portfolios based on a 
percentile range of a factor across a universe of stocks in the database that include columns for 
input features and an output response. 
 
Using the aggregation portion of the pipeline is as simple as creating an object describing the 
aggregation you want done, and then calling a function to do the aggregation. See the 
FactorPortfolioFactory section for information on how to describe the desired aggregation, and 
see the create_factor_portfolios section for information on how to start the aggregation process. 
 
If you’d also like to preprocess the raw data or postprocess the resulting portfolio, see the 
sections for FactorPortfolioPreprocessor and FactorPortfolioPostprocessor. 

FactorPortfolio 
The FactorPortfolio object is the main output of the aggregation portion of the pipeline. It 
contains several attributes describing the kind of aggregation used to create it as well as the 
pandas DataFrame holding the aggregated data. 
 
 



 
 
You can create a FactorPortfolio by simply providing values for each of the descriptive 
attributes, from start_date to out_response, and dyn_rb_period if necessary for a dynamic 
portfolio. The following picture shows a typical initialization. 
 

 
Once you’ve described a factor portfolio using this object, you can then aggregate it using 
create_factor_portfolios. See the create_factor_portfolios section for more details. Usually you 
will want to aggregate more than one portfolio at a time, in which case a FactorPortfolioFactory 
may be more useful. See the FactorPortfolioFactory section for more details. 
 
Once a FactorPortfolio has been aggregated (using create_factor_portfolios), its data attribute 
will contain a pandas DataFrame filled with aggregated data. The DataFrame will contain a row 
for every date between start_date and end_date either weekly or monthly depending on 
data_period and one column for each combination of in_factor and in_predictor formatted as 
(in_factor)_(in_predictor) along with one output response column formatted as 



fut_(ret_horizon)[_excess]_ret[_dyn]_(out_response) where the strings in brackets are only 
included if the portfolio is over excess returns or uses dynamic aggregation respectively.  
 
FactorPortfolios also have a handy display method for getting a quick look at their parameters 
and data.  
 

 
 

FactorPortfolioFactory 
The FactorPortfolioFactory object is a tool used for aggregating many factor portfolios at once 
without having to individually specify each one. It contains essentially the same attributes that 
FactorPortfolios do, but as lists of options instead of one particular choice. When passed to 
create_factor_portfolios, the factory will generate a FactorPortfolio object for each combination 
of attributes it contains. Note that input factors and input predictors are shared across all 
generated factor portfolios, and do not allow for multiple options. 
 



 
 
Creating a FactorPortfolioFactory is very similar to creating a FactorPortfolio. See the following 
image as an example. 
 

 
 
Note that the factory in this example is capable of creating 96 portfolios, as all possible 
combinations include (2 prime factors) * (2 percentile ranges) * (3 return horizons) * (2 return 
types) * (2 aggregation types) * (2 output responses) = 96 portfolios.  
 
Finally, FactorPortfolioFactorys also include a method for generating all of their FactorPortfolios 
without using create_factor_portfolios. However, note that the portfolios generated will not be 
aggregated, so this is generally not a useful function. It is almost always better to pass the 
whole factory to create_factor_portfolios. See the following image for an example of generating 
the portfolios, unaggregated. 
 

 



FactorPortfolioPreprocessor 
Often you will want to preprocess raw data before it gets aggregated into a portfolio. This can be 
done by implementing a subclass of the abstract base class (ABC) FactorPortfolioPreprocessor. 
ABCs are classes that define certain functions that subclasses are required to actually 
implement. The FactorPortfolioPreprocessor ABC has two such functions.  
 
The first is the __str__ function. This function should be implemented to return a unique string 
representation for this particular preprocessor. In other words, it should always return a 
consistent string that no other preprocessor returns, so that it can be uniquely identified by the 
pipeline. The string can be anything, but a more descriptive one will be easier to trace back to a 
particular preprocessor.  
 
The second function is called preprocess and has one parameter that allows for the raw data to 
be passed in. The data will be given as a pandas DataFrame with a row for every date/stock 
combination specified to be in the given portfolio, along with its input factor and output response 
information. This function is what allows you the chance to modify this DataFrame in place 
before it gets passed along to the actual aggregation part of the pipeline. You can do anything 
from remove outliers to removing certain undesirable sin stocks. 
 
Once you’ve implemented your version of a preprocessor, simply pass an instance of it into 
create_factor_portfolios to use it. See the create_factor_portfolios section for more details.  

FactorPortfolioPostprocessor 
You may want to modify data after it’s been aggregated into a portfolio. This can be done by 
implementing a subclass of the abstract base class (ABC) FactorPortfolioPostprocessor. ABCs 
are classes that define certain functions that subclasses are required to actually implement. The 
FactorPortfolioPostprocessor ABC has two such functions.  
 
The first is the __str__ function. This function should be implemented to return a unique string 
representation for this particular postprocessor. In other words, it should always return a 
consistent string that no other postprocessor returns, so that it can be uniquely identified by the 
pipeline. The string can be anything, but a more descriptive one will be easier to trace back to a 
particular postprocessor.  
 
The second function is called postprocess and has one parameter that allows for the 
aggregated portfolio to be passed in. The data will be given as a FactorPortfolio object, just as 
one would expect from the output of create_factor_portfolios. This function is what allows you 
the chance to modify this object in place before it gets passed along to the part of the pipeline 
that saves the results in the database. 
 



Once you’ve implemented your version of a postprocessor, simply pass an instance of it into 
create_factor_portfolios to use it. See the create_factor_portfolios section for more details.  

create_factor_portfolios 
Once you’re ready to start aggregating, create_factor_portfolios is the only function you need to 
know how to use. It’s fairly self-explanatory, but a description of its parameters will follow. 
 

 
 
The database connection must be a psycopg2 connection able to read and write to the 
database connected to the pipeline. Either the portfolio parameter or the factory parameter or 
both can be used to specify what portfolios to aggregate using FactorPortfolio and 
FactorPortfolioFactory objects. The identifier parameter will only matter for preprocessors, since 
the stock identifiers will be aggregated out by the end of the function. The preprocessor and 
postprocessor arguments give you a chance to provide a FactorPortfolioPreprocessor or 
FactorPortfolioPostprocessor for any additional processing of the data needed. Finally, 
ignore_save and ignore_load allow you to skip saving or loading from the database if desired. 
See the corresponding sections for explanations of the other objects mentioned here. 
 
Once finished, create_factor_portfolios will return a list of aggregated portfolios. A typical call to 
his function may look like as follows. 
 

 



Predictions 

Overview 
The Predictions is the step where the factor portfolios taken from Aggregation, and run the 
factor portfolios through the models created in the Predictions step. The models are created 
using the abstract based class Model.py 
 

Model 
The Model class is an abstract based class which is used to integrate the model one wishes to 
use into the Model class format. 
 

 
These are the attributes of the abstract model class. 
 
When defining the model one wants to use, the appropriate abstract functions should be 
extended. The two abstract functions that the user needs to be aware of is the training function 
and the __str__ function. 
 

 
The training function is where on the factor portfolio that is given, the model is run on with the 
training parameters to get the prediction data. In the extended class, this training function will 
need to be implemented by the user. 
 



The __str__ function is simply the function to give the model a name to be kept track of. 
 
When initializing a new model, the parameter needed is the factor portfolio on which the model 
is to be run on. 
 

 

 
There are two methods that can be used to set parameters to the model class. The 
set_parameter function is used to set one parameter at a time. The set_parameters is used to 
provide multiple parameters at once, in a key:value dictionary format. 
 
The final important function is the do_training function. This is the function that will do the 
training, store the data into the database. When running the do_training, no other parameters 
are needed. The above mentioned functions are used with the initially stored variables to run 
the do_training.  
 
Two additional functions are included to help visualize the different parameter in the factor 
portfolio. They are the display_model_ret, and display_metric(). 
 
So to run the entire Prediction step 

1. First the appropriate model object is created with the factor portfolio wanted to run the 
predictions on. 

2. Next, the set_parameters function is called on the object with the parameters in a list for 
with key:value 

3. Call do_training() to get the predictions for that factor portfolio with the said model. 
  



Stock Scoring 

Overview 
Stock Scoring is the final stage of the the pipeline, after predictions. In this stage, the predicted 
returns for factor portfolios are used to score all stocks in the buyable universe for desirability of 
expected returns. This is done in two stages. First, the predicted values are used to give a score 
of predictive power to each factor. These time-dependent scores of each factor are stored in a 
table called a factor policies table. Finally, these factor scores are used to score each individual 
stock at each time point to find a relative ranking of desirability of expected returns for each 
stock. 
 
The DynamicRiskPremium package defines three abstract classes for this stage of the process: 
AbstractFactorPolicyGenerator, AbstractStockScorer, and AbstractStockScoringSystem. Each 
of these classes have opportunities for extending functionality of the pipeline, and a concrete 
implementation of all three is necessary for functioning scoring logic. The primary logic of the 
scoring stage is implemented by a single function within each of the first two classes, while the 
last class, AbstractStockScoringSystem, serves to wrap the creation of the the others and give a 
standard way to pass data from a group of aggregated factor portfolios with predicted returns to 
the factor policy generator and then to the stock scorer. 

AbstractStockScoringSystem 

This class wraps the creation of a factor policy generator and a stock scorer while providing 
standard logic for passing data through the entire scoring system to get an output scores table. 
It has three functions: create_stock_scorer, create_factor_policy_generator, and do_scoring. 
This first two are abstract and must be implemented by extending classes. These 
implementations can and will often be trivial, calling constructors for the concrete 
implementations of the corresponding classes. 
 
create_factor_policy_generator (self, factor_portfolio_list, data_desc): 



 
This is an abstract function that needs to be overwritten in a subclass. The return for 
create_factor_policy_generator should be an instance of a class that extends 
AbstractFactorPolicyGenerator. If some data in the factor portfolios or the data_desc dictionary 
is needed in factor policy generation, it can be passed in here and saved to the factor policy 
generator in the constructor for use in generate_factor_policies. 
 
create_stock_scorer (self, factor_portfolio_list, data_desc): 

 
This is an abstract function that needs to be overwritten in a subclass. The return for 
create_stock_scorer should be an instance of a class that extends AbstractStockScorer. If some 
data in the data_desc dictionary is needed for stock scoring, it can be passed in here and saved 
to the stock scorer in the constructor for use in score_stocks. 
 
do_scoring (self, conn, factor_portfolio_list, data_desc): 



 
This function has logic already implemented and will take as inputs a connection to the stock 
database (conn), a list of aggregated FactorPortfolio objects with predicted future returns 
(factor_portfolio_list), and a dictionary to describe some common attributes of the 
FactorPorfolios passed to it (data_desc). The FactorPortfolio objects must all have the same 
start date, end date, an period type, and those three pieces of information should be passed in 
data_desc as described in the in-code documentation. This function takes care of compiling 
predicted returns from all FactorPortfolio objects into a factor portfolio statistics table, passing 
that to the factor policy generator, passing the factor policies table to the stock scorer, and 
storing both the factor policies table and stock scores back to the database 
 
This is an example of implementation of the entire stock scoring system: 

 

AbstractFactorPolicyGenerator 

This abstract class is dedicated to generating factor policies. These are tables which essentially 
score the predictive power of each factor at each time point. There is just one abstract method, 
generate_factor_policies, to be implemented in a subclass. 
 
generate_factor_policies (self, fpst): 



 
This method takes in a single pandas dataframe, referred to as a factor portfolio statistics table, 
or FPST for short. It must return a dataframe for the factor policies table, containing weights for 
every factor described by the given factor portfolios. It is quite possible the implementer of this 
class will want to use helper methods in their concrete implementation to help with, for example, 
the creation of a covariance table, which they are free to do. See the Factor Portfolio Statistics 
Table section for more details about the characteristics of this dataframe. 
 
Factor Portfolio Statistics Table 
This dataframe will be aggregated at the beginning of do_scoring from the pred_data 
dataframes in each of the FactorPortfolio objects passed to it. The index column should look 
identical to that of the data and pred_data dataframes in the factor portfolio objects. It will have 
an index labelled ‘date’ with integer values representing dates from the start date to the end 
date listed in the data_desc dictionary passed to do_scoring in the stock scoring system. The 
columns will be taken directly from each pred_data dataframe. Their column names can be 
expected to start with the name of a prime factor for which the predictions describe, but can 
contain more information afterwards, separated by a space. Though there is likely to be multiple 
statistics about each factor, the uniqueness of these column names is enforced in 
AbstractStockScoringSystem.do_scoring to aid with effective factor policy generation. 
 
Example of an FPST from two FactorPortfolios with prime factors of mcap and sales_g: 



 
 
Factor Policies Table 
This table is the output of the factor policy generator and one input to the stock scorer. Its index 
column will be like that of the fpst, with a label of ‘date’ and integer values representing dates 
from the start date to the end date listed in the data_desc dictionary passed to do_scoring in the 
stock scoring system. Column names will match the prime factors of the factor portfolios from 
which this table was generated. The values in these columns will be floating point numbers 
summing to 1.0 for any given row. 
 
Example of a factor policies table for the factors mcap and sales_g: 

 



AbstractStockScorer 

This class uses factor-level scores defined by a factor policies table, along with stock data 
queried from the database to generate stock-level scores for relative desirability of expected 
returns. This class has two methods, query_stock_data, and score_stocks. This first has already 
been implemented and creates a dataframe with percentile ranks of each stock for each factor 
in the factor portfolio list. The second is abstract and must be implemented in a subclass. The 
final result of this class will be a dataframe containing scores for every stock in the stock 
universe at every time point requested. This will be the final result of the entire DRP pipeline. 
 
query_stock_data (conn, fp_list, data_desc): 

 
 
This method is already implemented and will take as inputs a connection to the stock database 
(conn), a list of aggregated FactorPortfolio objects (fp_list), and a dictionary to describe some 
common attributes of the FactorPorfolios passed to it (data_desc). It will query the entire 
universe of stock level data and produce a dataframe containing a column of percentile ranks 
for each of the prime factors in the factor portfolios within fp_list. See the Stock Level Factor 
Data section for more details about the characteristics of this dataframe. 
 
Stock Level Factor Data 
This dataframe is one of two dataframes that are passed to score_stocks in the stock scorer. It 
has a double-level index, with labels of ‘date’ and ‘ticker’. For every row in the factor policies 
table and every stock in the database at that time point, there should be a row in the factor data 
table. The other columns will correspond to one of the prime factors in the factor portfolio list 
passed to query_stock_data and will be named with that factor name followed by ‘_rank’. The 
values in these columns will be floating point numbers from 0.0 to 1.0, inclusive, describing the 
percentile ranking of the given company for the given factor at that given time point (1.0 always 
meaning the highest value in that factor) 
 



Below is an example of the output from this method with fp_list containing factor portfolios for 
mcap and sales_g and weekly data from August 21, 2015 to December 25, 2015. 

 

 

score_stocks(fp_list, fwt, data): 

 
This method must be overwritten by a subclass of AbstractStockScorer. It takes as inputs the list 
of factor portfolios (fp_list), a factor policies dataframe (fwt), which is also called a factor weights 
table here, and a stock-level factor data dataframe (data). It must generate a dataframe with 
stock scores as described in the Stock Scores Table section. The output score value for each 
ticker and time period should be between 0.0 and 1.0, inclusive, with higher values being 
indicative of more desirable returns. It is important to consider in the implementation of this 
function that some factors are ‘positive’ or good factors while others are ‘negative’ or bad. This 
information can be gotten from the FactorPortfolio objects in fp_list by accessing the ‘positive’ 
attribute and should be taken into account when scoring stocks. For more information about the 
characteristics of the factor policies dataframe, see the Factor Policies Table section of the 
FactorPolicyGenerator description. 
 
Stock Scores Table 



This dataframe contains scores for every stock in the buyable stock universe at every time point 
requested and will be the final result of the entire DRP pipeline. The index of this table will be 
identical to that of the stock-level factor data table, with a level for dates and a level for tickers. 
There will be one non-index column called ‘score’ with floating point values from 0.0 to 1.0, 
inclusive. These represent how a given stock ranks against other stocks at that time point for 
desirable expected returns, where higher values are better. 
 
Here is an example of a stock scores dataframe: 

 

WeightedAverageStockScorer 
This class is a concrete implementation of AbstractStockScorer which is fully implemented and 
included with the DRP package. The implemented class will multiply each factor value for each 
ticker and time period by the matching factor weight table for that time period. For factors that 
are ‘negative’ it multiplies the weight in the factor policy for that time point by 1.0 minus the rank 
for that factor to get a score for each stock. By doing this, stocks with lower values of ‘negative’ 
factors will receive higher scores. 
 
 
 
 
 
 
 



Database 
The database we are currently using is a postgreSQL database 
located on an EC2 instance of an AWS (Amazon Web Services) 
server. The architecture of the database is visible to the right. All of 
the tables, views and other tools used for the purposes of the 
Dynamic Risk Premium 2.0 project are located within the drp_dev 
schema.  
 
There are two main ways to access the database. The first method 
is to use pgAdmin4. This is a free software with an intuitive user 
interface that can be used to edit schemas, add/drop tables, and 
view diagnostic information. This software is highly recommended 
for administrator use. The second method of accessing the 
database is directly through a python script running on the server. 
This method allows easy read and write access to the data within 
the database for use within a script. The simplest way to do this is 
to make sure psycopg is installed on the server and then import it 
into the script. Below is an example of accessing the database 
from a script as well as the host address and port number needed 
to access the database. Your username and password may vary, as they are administered by 
the Principal team. 

 
 
Host Address: ​qc-aurora-cluster.cluster-coh4objazhte.us-east-1.rds.amazonaws.com 
 
Port: ​5432 

 

 

  



Schema 
 

 

Tables 
The tables used for the Quant Modeling Library are all located within the drp_dev schema. 
Within this schema there are six tables; fp_parameters, fp_data, and fp_reference are used to 
store factor portfolio data, model_output table is used to store the output of the modeling step, 
and stock scores, factor_policies, and scores_reference are used to store the data created by 
the stock scoring step. The table shown above displays the relationship between these tables 
as well as the materialized views that will be discussed later. Descriptions of each table are 
located below. 
 

fp_parameters 
The factor parameters table is used to store the parameters used on a particular run of the DRP 
2.0 pipeline. This allows the same set of parameters to be used multiple times, as well as to 
identify what parameters were used to create the given data in a particular run. It has a self 
incrementing primary key called ‘fpap_id’ as an identifier. The rest of the columns in this table 



simple refer to the parameters of the factor portfolio. These are columns all have descriptive 
names to help with ease of understanding.  
Connections: 
fp_parameters.fpap_id → fp_data.fpap_id 
 
fp_parameters.data_period, fp_dataset_mv, 
fp_parameters.prime_factor, → factor_spreads_mv, 
fp_parameters.ret_horizon, factor_snapshot_mv 
 
fp_parameters.start_ptile → fp_dataset_mv, 

Factor_snapshot_mv 
 

 
Image: fp_parameters example 

 

fp_reference 
The factor portfolio reference table is used to keep track of all of the moving parts throughout 
the DRP 2.0 pipeline. It allows for easier tracking of the data created in the pipeline by 
implementing a session ID to track the factor portfolios created within the same session. It also 
includes a factor portfolio ID and factor parameters ID which are then used to reference the 
corresponding rows in the fp_data and fp_parameters columns respectively. The start and end 
date columns refer to the dates over which the factor portfolio is being considered.  
 
Connections: 
fp_reference.session_id → scores_reference.fp_grp_id 
 
fp_reference.fpap_id → fp_data.fpap_id 
 
fp _ reference.fp_id → model_id.fp_id 

 



 
Image: fp_reference example 

Note: ​Currently the start_date and end_date columns are stored as integers in the yyyymmdd 
format. Ideally this will be converted to the date format used in the date_run column. 
 

fp_data 
The factor portfolio data table is used to handle all of the aggregated data created by a given 
factor portfolio and parameters combination. The aggregated value as well as the aggregated 
return values are given as double precision values.  
 
Connections: 
Fp_data.fpap_id → fp_paremeters.fpap_id, 

fp_reference.fpap_id 
 
Fp_data.predictor, fp_dataset_mv, 
Fp_data.agg_ret_value → factor_spreads_mv, 

factor_snapshot_mv 
 

 
Image: fp_data example  

Note: ​The period column is stored as an integer, but ideally would converted to a date type 
column. 
 



pred_reference 
The pred_reference table is the table used to store the reference data created by the prediction 
stage of the pipeline. This table allows the user to see which models were used on which factor 
portfolios.  
 
Connections: 
pred_reference.pred_id → scores_reference.pred_id 

pred_return.pred_id 
 
pred_reference.fp_id → fp_reference.fp_id 
 
 

 
Image: pred_reference example 

pred_return 
The pred return table shows the predictions returned for each  factor portfolio for each of the 
date time period.  
 
Connections: 
pred_return.pred_id → pred_reference.pred_id 
 
 
 



 
Image: pred_return example 

pred_parameter 
The pred_parameter table shows for each prediction, what parameters were used to get the 
predictions from model. The pred_id is from which predictions these parameters were given too. 
 

 
Image: pred_parameter example 

Connections: 
pred_parameter.pred_id → pred_reference.pred_id 
 

scores_reference 
The scores_reference table easily shows which score id is related to which predictions and 
belongs to which session the factor portfolios were aggregated from.  
 
Connections: 
scores_reference.id → factor_policies.id, 

stock_scores.id 
 
scores_reference.fp_grp_id → fp_reference.session_id 
 
scores_reference.pred_id → model_output.model_id 
 



 
Image: score_reference example 

stock_scores 
The stock scores table stores some of the data found during the scoring stage of the pipeline. It 
holds the scoring value associated with the id and its period. The score is given as a double 
precision. The id is from the stock_scores.id, telling from which score id, these score come from 
 
Connections: 
stock_scores.id → stock_references.id 
 

 
Image: stock_scores example 

factor_policies 
The factor policies table stores the weight of the factor, its associated reference id, and its 
period. For each period with the same id, the weights will add up to 1. 
 
Connections: 
factor_policies.id → stock_references.id 
 



 
 

Materialized Views 
The three materialized views are denoted with “mv” at the end of the table name. 
Fp_dataset_mv and factor_snapshot_mv get the same information from fp_data and 
fp_parameters but under different conditions. When fp_data.factor is fut_1m_ret, fut_3m_ret, 
fut_6m_ret, fut_9m_ret, or fut_12m_ret, fp_dataset_mv retrieves the information needed.  
 

 
Image: fp_dataset_mv data example 

 
Note:​ The materialized view data examples were made from manual inputs into the database. 
They are not meant to be 100% accurate and true information, they are only meant to show how 
the data appears within the views. 
 
When fp_data.factor is prev_1m_ret, prev_3m_ret, prev_6m_ret, prev_9m_ret, or prev_12m_ret, 
factor_snapshot_mv and factor_spreads_mv retrieve the information they need.  
 



 
Image: factor_snapshot_mv data example 

 
Rows 1 - 2 are being repeated in rows 3 - 4 and 5 - 6 because it is getting the information for 
different fp_data.factor values. In this data example, rows 1 - 2 are grabbed when fp_data.factor 
= prev_1m_ret, 3 - 4 are grabbed when fp_data.factor = prev_3m_ret, and 5 - 6 are grabbed 
when fp_data.factor = prev_6m_ret.  
 



 
Image: factor_spreads_mv data example 

 
Note:​ Factor_spreads_mv currently contains all of the information of factor_snapshot_mv (with 
the exception of start_ptile) because of time constraints. Factor_spreads_mv was unable to be 
fully implemented, this image is a display of its current state. 
 
The materialized views do not have a trigger function to automatically refresh the data, so in 
order to view the newest data, they will have to be manual refreshed.  
 


