Quantitative Research
Modeling Library

Operation Manual v1

Team
sdMay19-06

Team Members
Josiah Anderson -- Meeting Facilitator
Doh Yun Kim -- Scribe
Gabriel Klein -- Report Manager
Drake Mossman -- Communication Manager
Jacob Richards -- Quality Assurance Manager
Nathan Schaffer -- Overseer

Client
Joseph Byrum
(Principal Financial Group)

Advisor
Srikanta Tirthapura

Contact
sdmay19-06@iastate.edu
https://sdmay19-06.sd.ece.iastate.edu

Last Updated:
29 April 2019

https://sdmay19-06.sd.ece.iastate.edu/

Getting Started

Aggregation
Overview
FactorPortfolio
FactorPortfolioFactory
FactorPortfolioPreprocessor
FactorPortfolioPostprocessor
create_factor_portfolios

Predictions
Overview
Model

Stock Scoring
Overview
AbstractStockScoringSystem
AbstractFactorPolicyGenerator
AbstractStockScorer
WeightedAverageStockScorer

Database

Schema

Tables
fp_parameters
fp_reference
fp_data
pred_reference
pred_return
pred_parameter
scores_reference
stock_scores
factor_policies

Materialized Views

o © 0 NN O W wWww W

(o]

N . I G Y
o OO W = = =

N DN DNDNMDNMNDNDDNDNNDMDNDMDNNMNDNA
O O O A DN W WN ~O O O

Getting Started

To begin using the Dynamic Risk Premium 2.0 Pipeline (DRP) simply make sure the package is
located somewhere on the python path and import it using the following line.

import DynamicRiskPremium as drp

Once imported, reference the other sections of this manual for information regarding the
available functions and objects, or browse the well-commented code itself to understand the
internal implementation.

Aggregation

Overview

The aggregation module of the pipeline is where you can create factor portfolios based on a
percentile range of a factor across a universe of stocks in the database that include columns for
input features and an output response.

Using the aggregation portion of the pipeline is as simple as creating an object describing the
aggregation you want done, and then calling a function to do the aggregation. See the
FactorPortfolioFactory section for information on how to describe the desired aggregation, and
see the create_factor_portfolios section for information on how to start the aggregation process.

If you'd also like to preprocess the raw data or postprocess the resulting portfolio, see the
sections for FactorPortfolioPreprocessor and FactorPortfolioPostprocessor.

FactorPortfolio

The FactorPortfolio object is the main output of the aggregation portion of the pipeline. It
contains several attributes describing the kind of aggregation used to create it as well as the
pandas DataFrame holding the aggregated data.

class FactorPortfolio:
This is the class representing a facter pertfolio

Attributes:

self: the FactorPortfolio object

start_date: the start date of this portfolio as "yyyymmdd™

end_date: the end date of this portfolio as “yyyymmdd™

data_period: the period between raw stock level data points (weekly ('W') or monthly ('M"))

prime_factor: the I

pos_factor: the expectation for the prime factor to be positively correlated with desirable buying (True or False)
start_ptile: the starting percentile of stocks in this portfolie based on this.prime_factor as an integer

the ending percentile of stocks in this portfolio based on this.prime_factor as an integer
the factors to include in this portfolio as a list of strings
: the input predictors for aggregating this.in_factors as a list ("mean”, “median®, “skew", etc.)
the method of aggregation for the portfolic ("Static”, "Dynamic™)
the type of returns to be used ("Absolute", "Excess")
ret_horizon: the i over which to aggregate ("1Iw", "1m", "3m", etc.)
out_response: the aggregaticn d for the returns in this portfolio ("mean™, "var", "skew")}

dyn_rb_period: optienal, for a dynamic portfolio, the time periocd for rebalancing (“1w™, "1m™, "3m", etc.)
data: a pandas Dataframe holding the factor portfolio data

aggregated: a boolean representing whether the portfolioc is complete

pred_data: a pandas Dataframe holding the predicted data based off the model

pred_id: the prediction id that was used to run the predictiens on this portfolio

You can create a FactorPortfolio by simply providing values for each of the descriptive
attributes, from start_date to out_response, and dyn_rb_period if necessary for a dynamic
portfolio. The following picture shows a typical initialization.

date_range = (19988181, 19328181)
data_period = "W’

prime_factor = 'bk p’

pos_factor = True

in_factors = ["prev_12m_ret®, "beta 1y", “"fcf p"”, "sales g"]
ptile range = (98, 168)
in_predictors = ["mean”, "skew"]
ret_horizon = "1m"

ret_type = “"Absolute”

agg_type = "Dynamic”

out_response = "mean”
dyn_rb_period = "1w"

fp = drp.FactorPortfolio(start date=date range[8], end_date=date range[1], data_period=data period,
prime_factor=prime_factor, pos_factor=pos_factor, start_ptile=ptile range[@e],
end_ptile=ptile range[1], in_factors=in_factors, in_predictors=in_predictors,
agg type=agg_type, ret_type=ret_type, ret_horizon=ret_horizon,
out_response=out_response, dyn_rb_periocd=dyn_rb_period)

Once you've described a factor portfolio using this object, you can then aggregate it using
create_factor_portfolios. See the create_factor_portfolios section for more details. Usually you
will want to aggregate more than one portfolio at a time, in which case a FactorPortfolioFactory
may be more useful. See the FactorPortfolioFactory section for more details.

Once a FactorPortfolio has been aggregated (using create_factor_portfolios), its data attribute
will contain a pandas DataFrame filled with aggregated data. The DataFrame will contain a row
for every date between start_date and end_date either weekly or monthly depending on
data_period and one column for each combination of in_factor and in_predictor formatted as
(in_factor)_(in_predictor) along with one output response column formatted as

fut_(ret_horizon)[_excess]_ret[_dyn] (out_response) where the strings in brackets are only
included if the portfolio is over excess returns or uses dynamic aggregation respectively.

FactorPortfolios also have a handy display method for getting a quick look at their parameters
and data.

fp.display()

Prime Factor: bk_p

Period: weekly from 199e8181 -> 1992@161

Percentile Range: o8 -> 1ee

Return Statistic: mean Absolute fut_1m ret

Aggregation Info: Dynamic aggregation withlw rebalancing

fut_im_ret_dyn_mean prev_12m_ret_mean beta_ly_mean %

period_yyyymmdd

1g960282 4.872825 -19.827934 0.894551

19988289 5.328519 -19.767323 B.898226

19988216 5.468158 -19.739338 8.897317

19968223 3.330360 -19.835472 B.868942

1g966382 8.40738@ -18.724543 ©.928537

199808389 -2.886542 -18.650483 B.544528

199@8316 -1.244285 -18.379325 8.936183

19968323 -2.532894 -17.419750 9.939337

12966338 -5.792733 -17.682417 B.983265

19988486 -2.328498 -28.677467 8.924637

199868413 -1.185327 -19.883382 B.922669
1.877679

129a6428 2.311571 -22.873274

FactorPortfolioFactory

The FactorPortfolioFactory object is a tool used for aggregating many factor portfolios at once
without having to individually specify each one. It contains essentially the same attributes that
FactorPortfolios do, but as lists of options instead of one particular choice. When passed to
create_factor_portfolios, the factory will generate a FactorPortfolio object for each combination
of attributes it contains. Note that input factors and input predictors are shared across all
generated factor portfolios, and do not allow for multiple options.

class FactorPortfolicFactory:

This is the class representing a factor portfolio factory. This class generates FactorPortfolios based
on combinations of the attributes given to it.

Attributes:

self: the FactorPortfolioFactory object
date_ranges: the date ranges for portfolios as a list of 2-tuples (“yyyymmdd”, "yyyymmdd")
data_periods: the periods between raw stock level data points for portfolios

as a list of strings (weekly ('W') or monthly ('M'))
prime_factors: the factors on which we will apply the percentile divisions to choose stocks as a list of strings

ptile ranges: the percentile ranges for which portfolios will be aggregated based on prime_factors
as a list of 2-tuples of integers
in_factors: the factors to include in portfolios as a list of strings
in_predictors: the input predictors for aggregating this.in_factors as a list ("mean”, "median”, "skew", etc.)
agg_types: the methods of aggregation for the portfoliocs as a list ("Static”, "Dynamic")
ret_types: the types of returns to be used as a list ("Absolute”, "Excess™)
ret_horizons: the return horizons over which to aggregate as a list ("iw", "1m", "3m", etc.)

out_responses: the aggregation methods for the returns in the portfolios as a list ("mean", "var", "skeu")
dyn_rb_periods: optional, for dynamic portfolios, the time periods for rebalancing as a list ("1w", "1m", "3m", etc.)
neg_factors: optional, a subset of prime_factors which are expected to be negatively-correlated

with desirable buying as a list of strings

Creating a FactorPortfolioFactory is very similar to creating a FactorPortfolio. See the following
image as an example.

date_ranges = [(19988181, 199281e1)]
data_periods = ['W']

prime_factors = ["bk p", "sales p"]
in_factors = ["prev_12m ret", "beta 1y", "fcf_p", "sales g"]
ptile_ranges = [(9@, 18@), (0, 18)]
in_predictors = ["mean", "skeu"]
ret_horizons = ["im", "3m", "&m"]
ret_types = ["Absolute", "Excess"]
agg_types = ["Static”, "Dynamic”]
out_responses = ["mean”, "skew"]
dyn_rb_periods = ["1w"]

factory = drp.FactorPortfolicFactory(date_ranges=date_ranges, data_periods=data_periods,
prime_factors=prime_factors, ptile_ranges=ptile_ranges,
in_factors=in_factors, in_predictors=in_predictors,
agg types=agg_types, ret_types=ret_types, ret_horizons=ret_horizons,
out_responses=out_responses, dyn_rb_pericds=dyn_rb periods)

Note that the factory in this example is capable of creating 96 portfolios, as all possible
combinations include (2 prime factors) * (2 percentile ranges) * (3 return horizons) * (2 return
types) * (2 aggregation types) * (2 output responses) = 96 portfolios.

Finally, FactorPortfolioFactorys also include a method for generating all of their FactorPortfolios
without using create_factor_portfolios. However, note that the portfolios generated will not be
aggregated, so this is generally not a useful function. It is almost always better to pass the
whole factory to create_factor_portfolios. See the following image for an example of generating
the portfolios, unaggregated.

factory.generate_factor_portfolios()

FactorPortfolioPreprocessor

Often you will want to preprocess raw data before it gets aggregated into a portfolio. This can be
done by implementing a subclass of the abstract base class (ABC) FactorPortfolioPreprocessor.
ABCs are classes that define certain functions that subclasses are required to actually
implement. The FactorPortfolioPreprocessor ABC has two such functions.

The first is the __str__ function. This function should be implemented to return a unique string
representation for this particular preprocessor. In other words, it should always return a
consistent string that no other preprocessor returns, so that it can be uniquely identified by the
pipeline. The string can be anything, but a more descriptive one will be easier to trace back to a
particular preprocessor.

The second function is called preprocess and has one parameter that allows for the raw data to
be passed in. The data will be given as a pandas DataFrame with a row for every date/stock
combination specified to be in the given portfolio, along with its input factor and output response
information. This function is what allows you the chance to modify this DataFrame in place
before it gets passed along to the actual aggregation part of the pipeline. You can do anything
from remove outliers to removing certain undesirable sin stocks.

Once you've implemented your version of a preprocessor, simply pass an instance of it into
create_factor_portfolios to use it. See the create_factor_portfolios section for more details.

FactorPortfolioPostprocessor

You may want to modify data after it's been aggregated into a portfolio. This can be done by
implementing a subclass of the abstract base class (ABC) FactorPortfolioPostprocessor. ABCs
are classes that define certain functions that subclasses are required to actually implement. The
FactorPortfolioPostprocessor ABC has two such functions.

The firstis the __str__ function. This function should be implemented to return a unique string
representation for this particular postprocessor. In other words, it should always return a
consistent string that no other postprocessor returns, so that it can be uniquely identified by the
pipeline. The string can be anything, but a more descriptive one will be easier to trace back to a
particular postprocessor.

The second function is called postprocess and has one parameter that allows for the
aggregated portfolio to be passed in. The data will be given as a FactorPortfolio object, just as
one would expect from the output of create_factor_portfolios. This function is what allows you
the chance to modify this object in place before it gets passed along to the part of the pipeline
that saves the results in the database.

Once you've implemented your version of a postprocessor, simply pass an instance of it into
create_factor_portfolios to use it. See the create factor_portfolios section for more details.

create factor_portfolios

Once you're ready to start aggregating, create_factor_portfolios is the only function you need to
know how to use. It’s fairly self-explanatory, but a description of its parameters will follow.

def create_factor_portfolios(db_conn, portfolio=None, factory=None, identifier='ticker’,
preprocessor=None, postprocessor=None, ignore_save=False, ignore_load=False):

Create a portfolic for each FactorPortfolic and/or for sach

list generated by a FactorPortfolioFactory

Parameters
db_conn: the database connection to retrieve data from
portfolio: a FactorPortfolio object describing a factor portfolio to create
factory: a FactorPortfolioFactory object describing factor portfolios to create
identifier: the stock identifier to use ("ticker", "sedol”, “cusip")
preprocessor: a FactorPortfolioPreprocessor to process stock level data before aggregation
postprocessor: a FactorPortfolioPostprocessor to process factor portfolios after aggregation
ignore_save: if true, will skip saving portfolios in the database
ignore_load: if true, will skip loading portfolios from the database

The database connection must be a psycopg2 connection able to read and write to the
database connected to the pipeline. Either the portfolio parameter or the factory parameter or
both can be used to specify what portfolios to aggregate using FactorPortfolio and
FactorPortfolioFactory objects. The identifier parameter will only matter for preprocessors, since
the stock identifiers will be aggregated out by the end of the function. The preprocessor and
postprocessor arguments give you a chance to provide a FactorPortfolioPreprocessor or
FactorPortfolioPostprocessor for any additional processing of the data needed. Finally,
ignore_save and ignore_load allow you to skip saving or loading from the database if desired.
See the corresponding sections for explanations of the other objects mentioned here.

Once finished, create_factor_portfolios will return a list of aggregated portfolios. A typical call to
his function may look like as follows.

portfolios = drp.create factor_portfolios(db _conn, factory=fp factory,
identifier="ticker', preprocessor=outlier preprocessor)

Predictions

Overview

The Predictions is the step where the factor portfolios taken from Aggregation, and run the
factor portfolios through the models created in the Predictions step. The models are created
using the abstract based class Model.py

Model

The Model class is an abstract based class which is used to integrate the model one wishes to
use into the Model class format.

class Model{ABC):

This is an abstract base class of the models

Attributes:
self: the Model object
factor_portfolic: the factor pertfelioc this model will run predictions on
training_ params: the parameters the model will run with in a dicticnary

These are the attributes of the abstract model class.

When defining the model one wants to use, the appropriate abstract functions should be
extended. The two abstract functions that the user needs to be aware of is the training function
and the __ str__ function.

@abstractmethod
def training(self, factor_portfolio, training params):
pass

This is the function that will run the training on the model to get predictions

Parameters:
self:
factor_portfolio:
training_params:

T
=
m

Model cbject
factor portfolic to run the training on
training parameters used to run this model with

it
=)

-y
= =
M

h

The training function is where on the factor portfolio that is given, the model is run on with the
training parameters to get the prediction data. In the extended class, this training function will
need to be implemented by the user.

The _str__ function is simply the function to give the model a name to be kept track of.

When initializing a new model, the parameter needed is the factor portfolio on which the model
is to be run on.

def set_parameter(self, param_name, param_value):
o

This is the function to set a parameter for the model.
Farameters:
self: the Model object
param_names: the name of the parameter
param_value: the value of the parameter

def set_parameters{self, new_training_params):
carar
This is the functien to set a group of parameters for the model.

Parameters:
self: the Model object
new_training_params: the group of parameters given in key: value dictionary

There are two methods that can be used to set parameters to the model class. The
set_parameter function is used to set one parameter at a time. The set_parameters is used to
provide multiple parameters at once, in a key:value dictionary format.

The final important function is the do_training function. This is the function that will do the
training, store the data into the database. When running the do_training, no other parameters
are needed. The above mentioned functions are used with the initially stored variables to run
the do_training.

Two additional functions are included to help visualize the different parameter in the factor
portfolio. They are the display_model_ret, and display_metric().

So to run the entire Prediction step
1. First the appropriate model object is created with the factor portfolio wanted to run the
predictions on.
2. Next, the set_parameters function is called on the object with the parameters in a list for
with key:value
3. Call do_training() to get the predictions for that factor portfolio with the said model.

Stock Scoring

Overview

Stock Scoring is the final stage of the the pipeline, after predictions. In this stage, the predicted
returns for factor portfolios are used to score all stocks in the buyable universe for desirability of
expected returns. This is done in two stages. First, the predicted values are used to give a score
of predictive power to each factor. These time-dependent scores of each factor are stored in a
table called a factor policies table. Finally, these factor scores are used to score each individual
stock at each time point to find a relative ranking of desirability of expected returns for each
stock.

The DynamicRiskPremium package defines three abstract classes for this stage of the process:
AbstractFactorPolicyGenerator, AbstractStockScorer, and AbstractStockScoringSystem. Each
of these classes have opportunities for extending functionality of the pipeline, and a concrete
implementation of all three is necessary for functioning scoring logic. The primary logic of the
scoring stage is implemented by a single function within each of the first two classes, while the
last class, AbstractStockScoringSystem, serves to wrap the creation of the the others and give a
standard way to pass data from a group of aggregated factor portfolios with predicted returns to
the factor policy generator and then to the stock scorer.

AbstractStockScoringSystem

This is an abstract class made to allow implementation of a complete stock scoring system. It will make use of the abstract
classes AbstractStockScorer and AbstractFactorPolicyGenerator.

This class wraps the creation of a factor policy generator and a stock scorer while providing
standard logic for passing data through the entire scoring system to get an output scores table.
It has three functions: create_stock_scorer, create_factor_policy generator, and do_scoring.
This first two are abstract and must be implemented by extending classes. These
implementations can and will often be trivial, calling constructors for the concrete
implementations of the corresponding classes.

create_factor_policy_generator (self, factor_portfolio_list, data_desc):

@abstractmethod

def create

i

This method must be overridden by subclasses of this class to create a factor policy object
that can be used to score stocks with.

Most of the time it will simply call the constructor of a class extending AbstractFactorPolicyGenerator

Parameters:
self : The AbstractStockScorer
factor_portfolio_list : List containing aggregated FactorPortfolio objects
data_desc: Dictionary with descriptors common to all aggregated factor portfolio statistics:
period_start: an integer in format YYYYMMDD for the starting period of all FactorPortfolios in fp_list
period_end: an integer in format YYYYMMDD for the ending period for all FactorPortfolios in fp_list
period_type: a string representing he period type ('W' or 'M') for all FactorPortfolios in fp_list

This is an abstract function that needs to be overwritten in a subclass. The return for
create_factor_policy generator should be an instance of a class that extends
AbstractFactorPolicyGenerator. If some data in the factor portfolios or the data_desc dictionary
is needed in factor policy generation, it can be passed in here and saved to the factor policy
generator in the constructor for use in generate_factor_policies.

create_stock_scorer (self, factor_portfolio_list, data_desc):

@abstractmethod
def create_stoc

i

This method must be overridden by subclasses of this class to create a stock scorer object that
can be used to score stocks with.

Most of the time it will simply call the constructor of a class extending AbstractStockScorer

Parameters:
self : The AbstractStockScorer
factor_portfolio_list : List containing aggregated FactorPortfolio objects
data_desc: Dictionary with descriptors common to all aggregated factor portfolio statistics:
period_start: an integer in format YYYYMMDD for the starting period of all FactorPortfolios in fp_list
period_end: an integer in format YYYYMMDD for the ending period for all FactorPortfolios in fp_list
period_type: a string representing he period type ('W' or 'M') for all FactorPortfolios in fp_list

This is an abstract function that needs to be overwritten in a subclass. The return for
create_stock scorer should be an instance of a class that extends AbstractStockScorer. If some
data in the data_desc dictionary is needed for stock scoring, it can be passed in here and saved
to the stock scorer in the constructor for use in score_stocks.

do_scoring (self, conn, factor_portfolio_list, data_desc):

This meathod meant to score stocks using the AbstractStockScorer and the AbstractFactorPolicyGenerator. This is
an example of the complete process of the stock scoring steps.

Parameters:
self : The AbstractStockScorer

conn : A connection to the database containing raw stock data

factor_portfolio_list : List containing agg ted FactorPortfolio objects

data_desc: Dictionary with descriptors common to all aggregated factor portfolio statistics:
period_start: an integer in format YYYYMMDD for the starting period of all FactorPortfolios in fp_list
period_end: an integer in format YYYYMMDD for the ending period for all FactorPortfolios in fp_list

period_type: a string representing he period type ('W' or 'M') for all FactorPortfolios in fp_list

This function has logic already implemented and will take as inputs a connection to the stock
database (conn), a list of aggregated FactorPortfolio objects with predicted future returns
(factor_portfolio_list), and a dictionary to describe some common attributes of the
FactorPorfolios passed to it (data_desc). The FactorPortfolio objects must all have the same
start date, end date, an period type, and those three pieces of information should be passed in
data_desc as described in the in-code documentation. This function takes care of compiling
predicted returns from all FactorPortfolio objects into a factor portfolio statistics table, passing
that to the factor policy generator, passing the factor policies table to the stock scorer, and
storing both the factor policies table and stock scores back to the database

This is an example of implementation of the entire stock scoring system:

class ExampleStockScoringSystem(drp.AbstractStockScoringSystem):

def create stock scorer(self, factor portfolioc list, data desc):
Using concrete stock scorer implementation from DRP package
return drp.WeightedAverageStockScorer()

def create factor policy generator(self, factor portfolio list, data desc):
return ExampleFPGenerator(factor_portfolic list, data_desc)

AbstractFactorPolicyGenerator

class AbstractFactorPolicyGenerator(ABC):

[

This class is dedicated to the creation of a factor policy.

This abstract class is dedicated to generating factor policies. These are tables which essentially
score the predictive power of each factor at each time point. There is just one abstract method,
generate_factor_policies, to be implemented in a subclass.

generate_factor_policies (self, fpst):

ies(self, fpst)

This method must be overridden by a subclass of this class to generate factor policies. It takes data passed from

the modeling stage as a factor portfolio statistics table in the form a pandas dataframe. The ouput of this method
should provide a factor polciy table or weight table to a AbstractStockScorer class.

Parameters:
self : The AbstractStockScorer
fpst : Factor Portfolio Statistics Table

This method takes in a single pandas dataframe, referred to as a factor portfolio statistics table,
or FPST for short. It must return a dataframe for the factor policies table, containing weights for
every factor described by the given factor portfolios. It is quite possible the implementer of this
class will want to use helper methods in their concrete implementation to help with, for example,
the creation of a covariance table, which they are free to do. See the Factor Portfolio Statistics
Table section for more details about the characteristics of this dataframe.

Factor Portfolio Statistics Table

This dataframe will be aggregated at the beginning of do_scoring from the pred_data
dataframes in each of the FactorPortfolio objects passed to it. The index column should look
identical to that of the data and pred_data dataframes in the factor portfolio objects. It will have
an index labelled ‘date’ with integer values representing dates from the start date to the end
date listed in the data_desc dictionary passed to do_scoring in the stock scoring system. The
columns will be taken directly from each pred_data dataframe. Their column names can be
expected to start with the name of a prime factor for which the predictions describe, but can
contain more information afterwards, separated by a space. Though there is likely to be multiple
statistics about each factor, the uniqueness of these column names is enforced in
AbstractStockScoringSystem.do_scoring to aid with effective factor policy generation.

Example of an FPST from two FactorPortfolios with prime factors of mcap and sales_g:

Factor Portfolio Statistics Table:
mcap pred Mean 1lm Abs ret sales g pred Mean lm Abs ret

date

20150821 0.066887 2.509556
20150828 -1.762554 -7.881269
20150904 2.770887 -6.432201
20150911 2.989621 -2.657597
20150918 4.558844 -6.908095
20150925 8.674122 -0.847489
20151002 7.881352 -0.392585
20151113 0.162449 -8.072539
20151120 -2.720093 -4.369131
20151127 -0.066490 1.307963
20151204 -1.494904 -0.982530
20151211 -3.796095 -6.359533
20151218 -5.951692 -15.641436
20151225 -6.107696 -16.905325

Factor Policies Table

This table is the output of the factor policy generator and one input to the stock scorer. Its index
column will be like that of the fpst, with a label of ‘date’ and integer values representing dates
from the start date to the end date listed in the data_desc dictionary passed to do_scoring in the
stock scoring system. Column names will match the prime factors of the factor portfolios from
which this table was generated. The values in these columns will be floating point numbers
summing to 1.0 for any given row.

Example of a factor policies table for the factors mcap and sales_g:

Factor Policies Table:
mcap sales g

date

20158821 ©.876867 ©0.923133
20158828 ©.888329 0.991671
20158984 0.321518 6.673482
201568911 ©.319538 0.680462
20150918 ©0.317486 0O.682520
20150925 0.648041 6.351959
20151682 ©.667714 ©.332286
20151113 ©.113472 ©O.886528
20151120 ©.155723 0.844277
20151127 ©.318131 0©O.681869
20151284 8.342298 08.657782
20151211 ©0.248479 @6.751521
20151218 ©0.144216 @.855784
20151225 ©.891027 6.968973

AbstractStockScorer

AbstractStockScorer(ABC) :

This is the abstract base class capable of scoring stocks based on assigned weights from a given factor weights table.

nin

This class uses factor-level scores defined by a factor policies table, along with stock data
queried from the database to generate stock-level scores for relative desirability of expected
returns. This class has two methods, query_stock_data, and score_stocks. This first has already
been implemented and creates a dataframe with percentile ranks of each stock for each factor
in the factor portfolio list. The second is abstract and must be implemented in a subclass. The
final result of this class will be a dataframe containing scores for every stock in the stock
universe at every time point requested. This will be the final result of the entire DRP pipeline.

query_stock_data (conn, fp_list, data_desc):

k_data(self, conn, fp_list, d

This meathod is for querying the entire universe of stocks baised for the given factor portfolios and data_desc parameters.
This will provide data in the form of a pandas dataframe to the score_stocks abstract method in order to produce scores.

Parameters:
self : The AbstractStockScorer
conn : A connection to the database containing raw stock data

List containing aggregated FactorPortfolio objects

Dictionary with descriptors common to all aggregated factor portfolio statistics:
period_start: an integer in format YYYYMMDD for the starting period of all FactorPortfolios in fp_list
period_end: an integer in format YYYYMMDD for the ending period for all FactorPortfolios in fp_list
period_type: a string representing he period type ('W' or 'M') for all FactorPortfolios in fp_list

This method is already implemented and will take as inputs a connection to the stock database
(conn), a list of aggregated FactorPortfolio objects (fp_list), and a dictionary to describe some
common attributes of the FactorPorfolios passed to it (data_desc). It will query the entire
universe of stock level data and produce a dataframe containing a column of percentile ranks
for each of the prime factors in the factor portfolios within fp_list. See the Stock Level Factor
Data section for more details about the characteristics of this dataframe.

Stock Level Factor Data

This dataframe is one of two dataframes that are passed to score_stocks in the stock scorer. It
has a double-level index, with labels of ‘date’ and ‘ticker’. For every row in the factor policies
table and every stock in the database at that time point, there should be a row in the factor data
table. The other columns will correspond to one of the prime factors in the factor portfolio list
passed to query_stock_data and will be named with that factor name followed by ‘_rank’. The
values in these columns will be floating point numbers from 0.0 to 1.0, inclusive, describing the
percentile ranking of the given company for the given factor at that given time point (1.0 always
meaning the highest value in that factor)

Below is an example of the output from this method with fp_list containing factor portfolios for
mcap and sales_g and weekly data from August 21, 2015 to December 25, 2015.

Stock Level Factor Data:
mcap_rank sales g rank

date ticker

208158821 A @.654870 a.4467a5
Al B.636628 8.626938
AABA 8.861434 8.536822
AAL 0.830426 0.8430623
AAN @.088178 8.912791
AAP @.674419 8.916667
AAPL 1.800800 8.890504

20151225 ZAYO 0.445305 8.869313
ZBH @.781220 8.788964
ZBRA @.2187806 8.995160
G @.825169 8.983543
ZI0N 8.383349 8.324298
ZNGA B.866796 8.825750
ZTS @.809293 8.488519

score_stocks(fp_list, fwt, data):

@abstra thod

ks(self, fp_list, fwt, data):

This method must be overridden by a subclass of this class to score stocks. It takes data from two pandas dataframes
fp_list and fwt, then should append and compute a score coloumb to the fp_list.

Parameters:
Selifn: The AbstractStockScorer
fp_list : List containing aggregated FactorPortfolio objects

fwt : Factor weights table containing weights for each time period and factor (a.k.a. Factor Policies Table)
data_desc: Dictionary with descriptors common to all aggregated factor portfolio statistics:
period_start: an integer in format YYYYMMDD for the starting period of all FactorPortfolios in fp_list
period_end: an integer in format YYYYMMDD for the ending period for all FactorPortfolios in fp_list
period_type: a string representing he period type ('W' or 'M') for all FactorPortfolios in fp_list

i

pass

This method must be overwritten by a subclass of AbstractStockScorer. It takes as inputs the list
of factor portfolios (fp_list), a factor policies dataframe (fwt), which is also called a factor weights
table here, and a stock-level factor data dataframe (data). It must generate a dataframe with
stock scores as described in the Stock Scores Table section. The output score value for each
ticker and time period should be between 0.0 and 1.0, inclusive, with higher values being
indicative of more desirable returns. It is important to consider in the implementation of this
function that some factors are ‘positive’ or good factors while others are ‘negative’ or bad. This
information can be gotten from the FactorPortfolio objects in fp_list by accessing the ‘positive’
attribute and should be taken into account when scoring stocks. For more information about the
characteristics of the factor policies dataframe, see the Factor Policies Table section of the
FactorPolicyGenerator description.

Stock Scores Table

This dataframe contains scores for every stock in the buyable stock universe at every time point
requested and will be the final result of the entire DRP pipeline. The index of this table will be
identical to that of the stock-level factor data table, with a level for dates and a level for tickers.
There will be one non-index column called ‘score’ with floating point values from 0.0 to 1.0,
inclusive. These represent how a given stock ranks against other stocks at that time point for
desirable expected returns, where higher values are better.

Here is an example of a stock scores dataframe:

Scores:
sCore
date ticker
20158821 A 8.438959
AL 9.606679
AABA 2.586289
AAL @.791258
AAN 8.912716
AAP @.871232
AAPL 8.822854
20151225 ZAY0 8.348674
ZBH a.737862
ZBRA 8.975635
G @.982750
ZION @.35e910
ZNGA @.835531
TS @.388692

WeightedAverageStockScorer

This class is a concrete implementation of AbstractStockScorer which is fully implemented and
included with the DRP package. The implemented class will multiply each factor value for each
ticker and time period by the matching factor weight table for that time period. For factors that
are ‘negative’ it multiplies the weight in the factor policy for that time point by 1.0 minus the rank
for that factor to get a score for each stock. By doing this, stocks with lower values of ‘negative’
factors will receive higher scores.

Database S

v = Databases (3)

The database we are currently using is a postgreSQL database : zz:;g’es
located on an EC2 instance of an AWS (Amazon Web Services) » @ Casts
server. The architecture of the database is visible to the right. All of . ﬁgj;i'ffjggem
the tables, views and other tools used for the purposes of the » % Extensions
Dynamic Risk Premium 2.0 project are located within the drp_dev s
schema. v W schomas (4)

> & apgec

v & drp_dev
There are two main ways to access the database. The first method i g L

¥y Domains
[FTS Configurations

is to use pgAdmin4. This is a free software with an intuitive user z

interface that can be used to edit schemas, add/drop tables, and B fenten
view diagnostic information. This software is highly recommended > [CIFTS Templates
for administrator use. The second method of accessing the e

database is directly through a python script running on the server. r

This method allows easy read and write access to the data within ;

the database for use within a script. The simplest way to do this is : o
to make sure psycopg is installed on the server and then import it > 9 factor_palicies
into the script. Below is an example of accessing the database - e

from a script as well as the host address and port number needed

to access the database. Your username and password may vary, as they are administered by

the Principal team.

import psycopg?

{} Functions
Materialized Views
1.3 Sequences
=] Tables (18)
£ agg_ret_val

5 factor_portfolio

1if name = " main "-

conn = psycopg?.connect (host="qg
database=

Host Address: qc-aurora-cluster.cluster-coh4objazhte.us-east-1.rds.amazonaws.com

Port: 5432

Schema

fpap_id
prime_factor
start_ptile
end_ptile
data_period
agg_type
ret_type
ret_horizon
out_response
dyn_rb_period
perproc_id

postproc_id

Tables

The tables used for the Quant Modeling Library are all located within the drp_dev schema.

fp_parameters

uiD

fp_dataset_mv agg_value
1
—— data_period p——— agg_ret_value
prime_factor period_yyyymmdd ge
e start_ptile
1 scores_reference
ret_horizon 4
id integer ==y
predictor Xl —
1 fo_grp_id integer —]
agg_ret_value i SiON —
1 pred_id nteger
o - 1
factor_spreads_mv factor_policies
— data_period weight P
| .
1 prime_factor period
fp———ret_horizon
7 = factor_name ox
—]
predictor " id teger =]
agg_ret_value —
1 stock_scores
factor_snapshot_mv period nte
[~ data_period ext id 0
[~ prime_factor ticker
—‘ start_ptile score
_1 ret_horizon
predictor —
agg_ret_value —_—

1

factor

1
= predictor

fpap_id eger ———

uiD

1
— session_id

fp_id teg —

+ foap_id
date_run

start_date

end_date

pred_reference

model_name

fp_id integer =1

start_date

end_date

pred_return

pred_id nteger =

period

return

pred_parameter

pred_id eger ==’

para_name

para_value

pred_id intege -

Ziholistics

Within this schema there are six tables; fp_parameters, fp_data, and fp_reference are used to
store factor portfolio data, model_output table is used to store the output of the modeling step,
and stock scores, factor_policies, and scores_reference are used to store the data created by
the stock scoring step. The table shown above displays the relationship between these tables

as well as the materialized views that will be discussed later. Descriptions of each table are
located below.

fp_parameters

The factor parameters table is used to store the parameters used on a particular run of the DRP
2.0 pipeline. This allows the same set of parameters to be used multiple times, as well as to

identify what parameters were used to create the given data in a particular run. It has a self

incrementing primary key called ‘fpap_id’ as an identifier. The rest of the columns in this table

simple refer to the parameters of the factor portfolio. These are columns all have descriptive
names to help with ease of understanding.

Connections:
fp_parameters.fpap_id — fp_data.fpap_id
fp_parameters.data_period, fp_dataset mv,
fp_parameters.prime_factor, — factor_spreads_mv,
fp_parameters.ret_horizon, factor_snapshot_mv
fp_parameters.start_ptile — fp_dataset mv,
Factor_snapshot_mv
fpap_id prime_factor start_ptile end_ptile data_period agg_type ret_type ret_horizon out_response dyn_rb_period preproc_id postproc_id
4 [PK]integer text integer integer text text text text text text text text
1 1 bk_p 78 100 M static absolute im mean w testpre testpst
2 2 bkp 80 100 W static absolute Tw Mean Tw testpre testpost
3 4 happiness 98 100 W Static Absolute m mean Tw test test
4 12 prev_1m_ret 98 100 W Static Absolute im Mean nul | Il
5 14 bk_p 98 100 W Static Absolute m Mean

Image: fp_parameters example

fp_reference

The factor portfolio reference table is used to keep track of all of the moving parts throughout
the DRP 2.0 pipeline. It allows for easier tracking of the data created in the pipeline by
implementing a session ID to track the factor portfolios created within the same session. It also
includes a factor portfolio ID and factor parameters ID which are then used to reference the
corresponding rows in the fp_data and fp_parameters columns respectively. The start and end
date columns refer to the dates over which the factor portfolio is being considered.

Connections:
fp_reference.session _id — scores_reference.fp_grp_id
fp_reference.fpap_id — fp_data.fpap_id

fp _ reference.fp_id — model_id.fp_id

uID session_id fp_id fpap_id date_run stari_date end_date

4 [PK] bigint integer integer integer date integer integer
1 1 [null] [rmull] [null] | [null] [rull] [null]
2 2 1 23 12 20190312 19980107 20000101
3 3 1 23 12 2019-03-12 19980107 20000101
4 o 1 23 12 20190312 19980107 20000101
5 9 5 28 18 [null] 19980107 20000101

Image: fp_reference example
Note: Currently the start_date and end_date columns are stored as integers in the yyyymmdd
format. Ideally this will be converted to the date format used in the date_run column.

fp_data

The factor portfolio data table is used to handle all of the aggregated data created by a given
factor portfolio and parameters combination. The aggregated value as well as the aggregated
return values are given as double precision values.

Connections:
Fp_data.fpap_id — fp_paremeters.fpap _id,
fp_reference.fpap_id
Fp_data.predictor, fp_dataset_myv,
Fp_data.agg_ret value — factor_spreads_mv,
factor_snapshot_mv
fpap_id factor predictor agg_value agg_ret_value period_yyyymmdd uiD
4 integer text text double precision double precision integer [PK] bigint
1 4 happin.. success 123.45 [null] [null] 1
2 18 prev_1.. mean -3.34841485 1.1167399 19980102 2
3 18 prev_l.. skew 0.76433365818431 1.1167399 19980102 3
4 18 prev_3.. mean -10.0040557 1.1167399 19980102 4
5 18 prev_3.. skew 0.160069919453434 1.1167399 19980102 5

Image: fp_data example
Note: The period column is stored as an integer, but ideally would converted to a date type
column.

pred_reference

The pred_reference table is the table used to store the reference data created by the prediction
stage of the pipeline. This table allows the user to see which models were used on which factor
portfolios.

Connections:
pred_reference.pred_id — scores_reference.pred_id
pred_return.pred_id
pred_reference.fp_id — fp_reference.fp_id
pred_id model_name fp_id start_date end_date
4 [PK] integer character varying integer imteger integer
38 38 Empty_Mode 382 20150821 20151231
39 39 Empty_Mode 384 2015081 20151231
40 40 Empty_Mode 383 20150821 20153121
41 41 Empty_Mode 385 20150821 20151231
42 42 Empty_Mode 382 20150821 20151231

Image: pred_reference example

pred_return

The pred return table shows the predictions returned for each factor portfolio for each of the
date time period.

Connections:
pred_return.pred_id — pred_reference.pred_id

pred_id period return

4 integer integer real
78 30 20150828 -1.76255
79 30 20150904 277089
B0 30 20150911 298952
81 30 20150918 4.55884
82 30 20150925 B.67412
B3 30 20151002 7.88135

Image: pred_return example

pred_parameter

The pred_parameter table shows for each prediction, what parameters were used to get the
predictions from model. The pred_id is from which predictions these parameters were given too.

pred_id para_namse para_value
4 | integer character varying character varying
1 22 window rolling
2 22 train_len 5
3 22 buffer_len 5
4 22 test_len 5

Image: pred_parameter example
Connections:

pred_parameter.pred_id — pred_reference.pred_id

scores_reference

The scores_reference table easily shows which score id is related to which predictions and
belongs to which session the factor portfolios were aggregated from.

Connections:
scores_reference.id — factor_policies.id,

stock scores.id
scores_reference.fp_grp_id — fp_reference.session _id

scores_reference.pred_id — model_output.model_id

id fp_grp_id pred_id

4 [PKlinteger integer integer
1 4 475 42
2 3 474 38
3 2 473 34

Image: score_reference example

stock_scores

The stock scores table stores some of the data found during the scoring stage of the pipeline. It
holds the scoring value associated with the id and its period. The score is given as a double
precision. The id is from the stock scores.id, telling from which score id, these score come from

Connections:
stock_scores.id — stock_references.id

period id ticker score
4 | imteger imteqer text double precision
1 20150821 3 A 0.438959187237681
2 20150821 3 AN 0.606678589877443
3 20150821 3 AABA 0.506209164292982
4 20150821 3 AAL 0.791257523240485
5 20150821 3 AAN 0.912716214605968
6 20150821 3| AAP 0.871231994911536
7 20150821 3 AAPL 0.822053936062491
8 20150821 3 ABBV 0.638900866372998

Image: stock_scores example

factor_policies

The factor policies table stores the weight of the factor, its associated reference id, and its
period. For each period with the same id, the weights will add up to 1.

Connections:
factor_policies.id — stock_references.id

weight period factor_name id
4 double precision integer text integer

16 | 0.692862515112597 20151009 mcap
17 0.307137484887403 20151009 sales_g
18 0.28130888295639 20151016 mcap
19 0.61869111704361 20151016 sales_g
20 0.334109739141673 ' 20151023 mcap
21 0.665890200858327 20151023 sales_g
22 | 0.252765948890463 20151030 mcap

L5 RN % I ' BN S DR 5 A 5 R 4TS |

Materialized Views

The three materialized views are denoted with “mv” at the end of the table name.
Fp_dataset_mv and factor_snapshot_mv get the same information from fp_data and
fp_parameters but under different conditions. When fp_data.factor is fut_1m_ret, fut 3m_ret,
fut_ 6m_ret, fut_ 9m_ret, or fut_12m_ret, fp_dataset_mv retrieves the information needed.

data_period
J | text

1T | M

prime_factor start_ptile ret_horizon predictor agg_ret_value
text integer text text double precision
bk_p 78 Tm mean 10

Image: fp_dataset_mv data example

Note: The materialized view data examples were made from manual inputs into the database.
They are not meant to be 100% accurate and true information, they are only meant to show how
the data appears within the views.

When fp_data.factor is prev_1m_ret, prev_3m_ret, prev._6m ret, prev._9m ret, or prev_12m_ret,
factor_snapshot_mv and factor_spreads_mv retrieve the information they need.

00 =~ & | & W M

=]

10
11
12
13
14

data_period
text

prime_factor start_ptile
text integer

bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p
bk_p

o8
93
93
93
98
93
93
93
o8
93
93
93
98
93
93

ret_horizon
text

m
m
m
Tm
m
m
m
Tm
m
m
m
Tm
m
m

m

predictor
text

mean
shew
mean
shew
mean
shew
mean
skew
mean
shew
mean
shew
mean
shew

mean

Image: factor_snapshot_mv data example

agg_ret_value
double precision

1.1167399
1.1167399
1.1167399
1.1167399
1.1167399
1.1167399
7.9674761
7.9674761
7.9674761
7.9674761
79674761
79674761
5.6269117
5.6269117
5.6569117

Rows 1 - 2 are being repeated in rows 3 - 4 and 5 - 6 because it is getting the information for
different fp_data.factor values. In this data example, rows 1 - 2 are grabbed when fp_data.factor
=prev_1m_ret, 3 - 4 are grabbed when fp_data.factor = prev_3m_ret, and 5 - 6 are grabbed
when fp_data.factor = prev_6m_ret.

data_period prime_factor ret_horizon predictor agg_ret_value

| text text text text double precision
1 W bk_p m mean 1.1167399
2 W bk_p im skew 1.1167399
3 W bk_p m mean 11167399
4 W bk_p m skew 1.1167399
5 W bk_p m rmean 1.1167399
6 W bk_p m skew 1.1167399
7 W bk_p Tm mean 7.9674761
B W bk_p m skew 79674761
g W bk_p m mean 79574761
10 W bk_p im skew 79674761
11 W bk_p m mean 7.9674761
12 W bk_p m skew 79674761
13 W bk_p m rmean 5.6569117
14 W bk_p m skew 5.6569117
15 W bk_p Tm mean 5.6569117

Image: factor_spreads_mv data example

Note: Factor_spreads_mv currently contains all of the information of factor_snapshot_mv (with
the exception of start_ptile) because of time constraints. Factor_spreads_mv was unable to be
fully implemented, this image is a display of its current state.

The materialized views do not have a trigger function to automatically refresh the data, so in
order to view the newest data, they will have to be manual refreshed.

