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1 Introductory Material 

1.1 Acknowledgement 
Team 06’s Faculty advisor: Srikanta Tirthapura 
Team 06’s client: Principal Financial, primarily Benjamin Harlander and Vishnu Vemuru 
Interviewed Data Scientists: Josh Zimmerman, … 
We would like to thank Srikanta Tirthapura for being our advisor and helping us out. 
P 

1.2 Problem Statement 
Principal Financial recently created a team of data scientists to work within their Global 
Investments Department to analyze equity data and help the company make better financial 
decisions. This team does not have a unified or consistent way of aggregating data and running 
models on data. This causes losses in time and efficiency.  

 
Our task is to research effective tools and procedures for the data science team, and create a 
unified application that can be used by all members of the team to run prediction models on 
stock equity data.  

 

1.3 Operating Environment 
The intended operating environment for this application will be the personal work computers 
used by the data scientists at Principal. The software environment for this application is 
something that is still flexible and needs to be established.  

1.4 Intended Users and Uses 



 The intended users of this project are the 11 data scientists already employed at Principal 
Financial and any future data scientists that will work alongside them. This means that this tool 
must be easy to grasp and must be intuitive for those experienced in data science. The uses of 
this product should be similar for all users: to take stock equity data and use it to model the 
most likely trajectory of those stocks. 

1.5 Assumptions and Limitations 
 Assumptions: 

1. All data will come from either Factset or Bloomberg 
2. Users will have moderate experience with either Python or R  

Limitations: 
1. Most data scientists only know one of Python or R  

1.6 Expected End Product and Deliverables 
The final tool will be an application that meets a few specific criteria: 

1. It will be modular in design 
2. It will be compatible with Python and R 
3. It will efficiently run the common prediction models used by Principal data scientists 
4. It will have an intuitive User Interface 
5. We expect to provide a functional product that is ready for deployment by May of 2019.  

 

1.7 Related Work / Market Survey / Literature Review  
 
We will also be using some Python and R packages that have already been developed to 
implement our product. Our team has not found any similar tools being used at companies like 
Principal. 

2. Specifications and Analysis 

2.1   Proposed Approach 

2.1.1   Functional Requirements 
The project has the following five main functional requirements: 

1. It should be able to run a selectable number of iterations of rolling window calculations 
automatically with a user-defined prediction model 



2. It will be able to import/export results 
3. It will be possible to augment the model with new data if needed (no need to rerun the 

model with new data) 
4. It should be able to fit various machine learning models, including linear regression 
5. It will be able to use data from multiple sources 

 

2.1.2   Non-Functional Requirements 
1. (Performance) Should not lengthen runtime of a single iteration of rolling window 

calculations 
2. (Performance) Should be able to handle up to several GB of data 
3. (Performance) Should be able to handle millions of observations and hundreds of 

columns 
4. (Usability) Faster to use than their existing method of manually finding data and inputting 

it into models 

2.1.3   Constraints Considerations 
 The program languages Principal primary uses is R and Python. Our program will be need to 
be either R and Python because that is what Principal’s data scientist team is most familiar with. 

2.1.4   Technology Considerations 
There are no technology considerations of yet. 
 

2.1.5   Security Considerations 
There are no significant security considerations for our project. Our chosen approach doesn’t 
require any communication with the internet or other computers, remaining entirely local. 
Additionally, our approach doesn’t persist any sensitive information on the computer after 
running. Thus any and all information involved is discarded after runtime. For these reasons we 
do not have any further considerations for the security of the project. 

2.1.6   Safety Considerations 
There are also no significant safety considerations for our project. Our approach doesn’t contain 
any sort of physical component, meaning there is no danger of physical harm to a user. 
Additionally our project is meant to handle financial information and not any sort of safety-critical 
data, so there is no danger of the results bringing about harm either. The worst that could 
happen is a loss of money due to a poorly created model which we will of course be taking 
precautions against using our testing plan in section 3. In any case, we have no further 
considerations for injury in the use of our project.  



2.1.7   Standards 
There are very few standards the code we are creating must comply with. The code must be 
able to communicate with SQL servers in order to gather and aggregate data. The code must 
also be able to be accessed by programmers for their implementation. 

2.1.8   Possible Risks and Risk Management 
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Figure 1: Our Risk Management Chart and Keys  

2.1.9   Proposed Milestones and Evaluation Criteria 
● Investigate 

○ Interview different data scientists that work at Principal to gather information 
about their coding practices. 

○ Research example code and find commonalities between them. 
● Prototype 

○ Taking information we receive from the interview process and create a prototype. 
● Test 

○ Run prototyped code with real simulation code. 
○ Test for bugs and errors in code. 
○ Fix and adjust any problems with code. 

● Final Project 
○ Present final product to Principal executives. 

2.1.10   Project Tracking Procedures 
The project management systems we chose to utilize are Gitlab issues and GroupMe. Using 
Gitlab issues allows us to track progress of specific tasks by allowing us to assign tasks and 
establish deadlines to each individual. Gitlab Issues allow us to also review tasks at our 
bi-weekly meetings and help keep all team members on the same page. We also chose to use 
GroupMe for instant messaging which allows for quicker communication between group 
members. 



 

2.2   Statement of Work 

2.2.1   Task Objective 
Our objective for this project is to take data manipulation and prediction processes currently 
used by our client and automate them. This includes the splitting of training and testing data 
from a chronological set, normalization, non-linear feature engineering, cross validation, model 
creation, and of course prediction. The training data must be kept safe from contamination due 
to the temporal nature of the desired predictions. Our project will allow data scientists to quickly 
and easily create and test models using a variety of parameters and without needing to write 
boilerplate code or worry about errors in the data manipulation processes. 

2.2.2   Task Approach 
After discussing several alternatives, the approach we’ve decided on is to write a Python library 
to meet our objective. The library will consist of high-level functions and objects with a variety of 
parameters able to perform the necessary data manipulations. This enables the user to create 
and test models using very few lines of code. 
 
Strengths: 

1. Python is a common general purpose language 
2. Python is already used by some of the client’s employees 
3. Flexible functionality using object members and function parameters 
4. Easily extendable by adding new calls 
5. Easy to install and distribute 

 
Weaknesses: 

1. High level of parameterization needed could require verbose function calls or object 
initialization 

2. Requires users to learn a new set of functions to interface with 
 
Overall we feel that the strengths of this approach outweigh the weaknesses, and that other 
approaches aren’t significant improvements (See Section 2.2.3). While users will have to learn 
the set of functions we provide, this is true for really any solution we come up with for 
automating processes. Similarly, there may be significant explicit configuration required 
resulting in verbose code, but this is again true for any approach that wants to provide that level 
of customization.  



On the other hand, Python is a powerful general purpose language with significant popularity in 
data science. It’s faster than R, meaning the overall runtime of scripts using the library will be 
reduced. Additionally the library will be easily integratable into the client’s current workflow, as it 
simply replaces large blocks of code with a single line that calls the library to do the same 
manipulations.  
 
The library will provide an object type that can be loaded with data through a method call. Once 
initialized as such, other functions can then be called with the data object to perform 
manipulations and transformations. Due to the enormous amount of customization required for 
the various data manipulations, some generalized functions would require tens or hundreds of 
arguments to specify. To cut down on this, we’ll offer various more specific calls for different 
classes of manipulations and keep the number of arguments on a small scale.  
 
The internals of the library will make heavy use of the other libraries our client is already making 
use of including numpy, pandas, sklearn, and matplotlib. Each of these already implements a lot 
of very useful functionality, so our library will mainly be focused on combining them to perform 
larger tasks.  
 

 
Figure 2: Example of a small subset of function calls and their relationship to the internals 



2.2.3   Alternative Approaches 
The following consist of several approaches we considered but eventually rejected in favor of 
our current plan. 
 
R Library 
 
We considered meeting our objective by writing a library of data manipulation functionality 
implemented in R. The library would consist of high-level functions and objects with a variety of 
parameters able to perform the necessary processes using single lines of code.  
 
Strengths: 

1. R is a very common language used by data scientists 
2. R is already used by some of the client’s employees 
3. Flexible functionality using object members and function parameters 
4. Easily extendable by adding new calls 
5. Easy to install and distribute 

 
Weaknesses: 

1. High level of parameterization needed could require verbose function calls or object 
initialization 

2. R is relatively slow at performing the required processes 
3. Requires users to learn a new set of functions to interface with 

 
We decided not to go with this solution mostly due to R’s lackluster performance in data 
manipulations. Many of the processes required take a significant amount of time to complete 
depending on the amount of data to process and the type of model being tested. The 
unfortunate lack of speed when using R would result in much longer runtime, which is counter to 
the project’s goal of saving time through automation. Additionally we found that using Python 
would be a similar yet faster solution with many of the same strengths.  
 
Standalone Application 
 
Another way we considered meeting our objective was by creating a standalone application that 
could run various data manipulation processes through a UI. The user would feed data to the 
application and choose the processes to be run on it. The UI would also allow for a significant 
amount of custom configuration for users to adjust as needed.  
 
Strengths: 

1. Doesn’t require any coding to process data 
2. Able to keep track of user preferences and state between sessions 
3. Intuitive to use 



4. Can easily save and reload models and results 
5. Doesn’t require installation of dependencies 
6. Doesn’t require user to use a particular language for other data manipulation 

 
Weaknesses: 

1. Difficult to feed results back into code 
2. Unfamiliar concept for client’s employees 
3. Additional functionality requires building more UI 
4. Less platform independent 
5. Doesn’t update along with packages automatically 

 
We didn’t choose this approach mainly because our client wants the end product to be available 
to many users easily and without a high learning curve. This application would require users to 
learn an entirely new interface that doesn’t even mesh well with their existing workflows. 
Normally data is passed almost exclusively through code, so adding an application that has to 
import and export the data into the mix is somewhat awkward.  
 
Browser Application 
 
The final approach we considered was a browser application that could run all of the data 
manipulation processes remotely. The user could upload data and choose processes to be run 
on it. The application would provide a UI that could configure the processes as necessary. 
These processes would then be run on a server and the results sent back to the user.  
 
Strengths: 

1. All processes can be run on a server with above average processing power and memory 
2. Results can be saved remotely and shared with other users 
3. Doesn’t require the user’s computer to be available while running 
4. Doesn’t require coding to process data 
5. Able to keep track of user preferences and state between sessions 
6. Intuitive to use 
7. Doesn’t require installation of dependencies 
8. Doesn’t require user to use a particular language for other data manipulation 

 
Weaknesses: 

1. User must be online initially and to get the results 
2. Big data must be uploaded and downloaded often 
3. Difficult to feed results back into code 
4. Unfamiliar concept for client’s employees 
5. Additional functionality requires building more UI 
6. Requires a server to be accessed from 

 



Similar to the previous approach, the browser application was not chosen because of the 
learning curve and adjustment to workflow required. With the added complication of uploading 
and downloading the data, this approach could serious disrupt the flow of data without 
significant benefits.  

2.2.4   Expected Results 
Once the project is complete, we expect to have a functioning Python library that allows users to 
make one line function calls to perform significant data manipulations such as engineering 
nonlinear features, cross validation, or backtesting. This will be possible through a variety of 
function calls made available to the user. By stringing a few of these calls together, we expect 
the user to be able to create complex models able to predict responses based on the features 
given.  
 
The library will be portable and easy to distribute. It will simply need to be added using a 
package manager and then imported into the code to be used. Users can expect to be able to 
use all the functionality immediately and with little hassle. The code will also be written 
consistently and with maintainability in mind, allowing for new functionality to be added as 
necessary in the future.  

3 Testing and Implementation 
 
 
There are primarily two parts to our plan to test our product: requirement testing and user 
testing. The first will test each of the functional and non-functional requirements we have 
defined for our deliverables, ensuring correctness of the algorithms, and adequate functionality 
within its use context. The second will test our design and documentation for our users’ 
perceptions, ensuring that its use is intuitive and self-explanatory. Outcomes from either of 
these test types could lead to reworking our product and retesting. 

3.1 Requirements Testing 
The primary goal of requirements testing is to ensure that our automation of tasks remains 
correct (does not change the expected outputs for each simulation) and performs well within its 
context. 

3.1.1   Functional Testing 
Examples include unit, integration, system, acceptance testing 
 



1. Compare 10+ runs of rolling window calculations between our solution and the previous 
method, varying selectable parameters, including, but not limited to: 

a. Window train size 
b. Window test size 
c. Buffer size 
d. Predictive model / algorithm 
e. Each run should produce the same result from legacy code to new solution 

 
2. The user can observe the output of the tests run in at least one manner. 

 
3. Augment varying amounts of additional data to a partially-constructed model and reverify 

the model’s functionality. The model must still functions with 5+ trials. 
 

4. Run simulations with linear regression and at least two other models, verifying the 
correctness of their results 

 
5. Run 5+ simulations with data from each of FactSet and Bloomberg, verifying their results 

3.1.2   Non-Functional Testing 
Testing for performance, security, usability, compatibility 
 

1. Benchmark the runtimes of rolling window iterations in both old scripts and new scripts 
over tests for functional requirements and ensure that the runtime for the new version 
isn’t longer (within a threshold) 

2. Run a simulation with a data set of 2-5 Gb and verify it finishes. 
3. Run a simulation over data consisting of > 100 features and > 1,000,000 observations, 

verifying that it completes. 
4. Test with 6+ data scientists, getting feedback to ensure the product does save them 

time. 

3.2 Usability Testing 
Usability testing is paramount to our project because if the product we produce isn’t intuitive and 
convenient to use, it will defeat one of its primary purposes of saving our users time. 

3.2.1   Process 
To test our library’s usability, we will be putting it in the hands of data scientists, especially the 
members of Principal’s team whom we interviewed at the onset of the project. We will ask them 
both to use it in their typical tasks and, if necessary, to try it in contexts and tasks that would 
more thoroughly test its functionality. After a fixed length of time testing our product, we will 
meet with them to elicit their feedback. 



3.6   Results 
No testing has been done in our project so far. 

  
  
4 Estimated Resources and Timeline  

4.1   Estimated Resources 

4.1.1 Personnel Effort Requirements 
Each team member is expected to put in around 7 hours a week for this project. Each hour of 
work needs to be filled with hard work and focus in order for this project to succeed. 

4.1.2 Other Resource Requirements 
Other resources needed for this project are: previous code from the team before us, examples 
of the different tests they run, and examples of the data format. 

4.1.3 Financial Requirements 
Since this project is a software only project, there is no cost needed for hardware or any special 
equipment. The data needed for the project is provided by Principal at no cost. 

 

 

 

 

 



4.2   Project Timeline 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
Figure 3: The gantt chart for our project  



5 Closing Material 

5.1 Conclusion 
So to summarize, our team will create a Python library for Principal to use. This library will allow 
Principal to save time on their redundant tasks, and allows them to further streamline their work. 
This will allow for consistency and less mistakes in the process of creating the models. 
  

5.2 References 
No references of now. 

  

5.3 Appendices 
 No appendices of now. 

 


