

sdMay19-06 Project Plan V2

Josiah Anderson
Doh Yun Kim
Gabriel Klein

Drake Mossman
Jacob Richards
Nathan Schaffer

1

Table of Contents

Table of Contents 1

List of Figures 3

List of Tables 3

1 Introductory Material 4
1.1 Acknowledgement 4
1.2 Problem Statement 4
1.3 Operating Environment 4
1.4 Intended Users and Uses 4
1.5 Assumptions and Limitations 5
1.6 Expected End Product and Deliverables 5

2 Specifications and Analysis 6

2.1 Proposed Approach 6
2.1.1 Functional Requirements 6
2.1.2 Non-Functional Requirements 6
2.1.3 Constraints Considerations 6
2.1.4 Technology Considerations 7
2.1.5 Security Considerations 7
2.1.6 Safety Considerations 7
2.1.7 Standards 7
2.1.8 Possible Risks and Risk Management 8
2.1.9 Feasibility Assessment 9
2.1.10 Cost Considerations 10
2.1.11 Proposed Milestones and Evaluation Criteria 10
2.1.12 Project Tracking Procedures 11

2.2 Statement of Work 11
2.2.1 Task Objective 11
2.2.2 Task Approach 11
2.2.3 Alternative Approaches 13
2.2.4 Expected Results 15

3 Testing and Implementation 16
3.1 Requirements Testing 16

3.1.1 Functional Testing 16

2

3.1.2 Non-Functional Testing 17
3.2 Usability Testing 17

3.2.1 Process 17
3.3 Results 17

4 Estimated Resources and Timeline 17
4.1 Estimated Resources 17

4.1.1 Personnel Effort Requirements 17
4.1.2 Other Resource Requirements 18
4.1.3 Financial Requirements 18

4.2 Project Timeline 18

5 Closing Material 21
5.1 Conclusion 21
5.2 References 21
5.3 Appendices 21

3

List of Figures
Figure 1: Pipeline Process Diagram with Interface Hooks

List of Tables
Table 1: Risk Description Chart
Table 2: Risk Consequences Mapping
Table 3: Risk Likelihood Mapping
Table 4: Risk Mapping from Likelihood and Consequence to Severity
Table 5: Risk Severity Mapping
Table 6: Gantt Chart Part 1
Table 7: Gantt Chart Part 2
Table 8: Gantt Chart Part 3
Table 9: Gantt Chart Part 4

4

1 Introductory Material

1.1 Acknowledgement
Team 06’s Faculty advisor: Srikanta Tirthapura
Team 06’s client: Principal Financial, primarily Benjamin Harlander and Vishnu Vemuru
Interviewed Data Scientists: Josh Zimmerman, …
We would like to thank Srikanta Tirthapura for being our advisor and helping us out.

1.2 Problem Statement
Principal Financial recently has a team of data scientists and interns that work within their
Global Investments Department to analyze equity data and help the company make better
financial decisions. This team does not have a unified or consistent way of aggregating data and
running models on data. This causes losses in time and efficiency.

Some main contributors of inefficiency include: manual data aggregation done by one individual
on the team for every other member, rewritten boilerplate code for common data manipulation
processes, and unuseable scripts due to mistakes in data manipulation.

Our task is to research effective tools and procedures for the data science team, and create a
unified application that can be used by all members of the team to run prediction models on
stock equity data. This solution needs to be easy to integrate into the current workflow for
minimal disruption and save the company time by introducing standards and automation.

1.3 Operating Environment
The intended operating environment for this application will be the personal work computers
used by the data scientists at Principal. The software environment for this application is
something that is still flexible and needs to be established.

1.4 Intended Users and Uses
 The intended users of this project are the 11 data scientists already employed at Principal
Financial and any future data scientists that will work alongside them. This means that this tool
must be easy to grasp and must be intuitive for those experienced in data science. The uses of
this product should be similar for all users: to take stock equity data and use it to model the
most likely trajectory of those stocks.

5

1.5 Assumptions and Limitations
 Assumptions:

1. All data will come from either Factset or Bloomberg
2. Users will have moderate experience with either Python or R

Limitations:
1. Most data scientists only know one of Python or R

1.6 Expected End Product and Deliverables
Our final expected end product will be a unified pipeline for the DRP 2.0, standardizing the
process of how data is passed between each stage.
The deliverables will be:

1. The Unified Pipeline that will bring together DRP 2.0
2. Documentation on how the unified pipeline works, and the data needed to be passed

through at each stage.

1.7 Related Work / Market Survey / Literature Review

We looked into multiple libraries for both Python and R which previously existed with purposes
similar to ours. Quantopian and Quatiacs are Python libraries for quantitative data analysis.
Another library, caret (Classification And REgression Training), exists for creating predictive
models of data in R.

Although these tools overlap to some extent to ours, we have begun to identify how our project
has a niche which is independent from these other tools while finding inspiration and guidance
from their similarities.

6

2 Specifications and Analysis

2.1 Proposed Approach

2.1.1 Functional Requirements
The project has the following five main functional requirements:

1. It should be able to run a selectable number of iterations of rolling window calculations
automatically with a user-defined prediction model

2. It will be able to import/export results
3. It will be possible to augment the model with new data if needed (no need to rerun the

model with new data)
4. It should be able to fit various machine learning models, including linear regression
5. It will be able to use data from multiple sources

2.1.2 Non-Functional Requirements
1. (Performance) Should not lengthen runtime of a single iteration of rolling window

calculations
2. (Performance) Should be able to handle up to several GB of data
3. (Performance) Should be able to handle millions of observations and hundreds of

columns
4. (Usability) Faster to use than their existing method of manually finding data and inputting

it into models

2.1.3 Constraints Considerations
 The program languages Principal primary uses is R and Python. Our program will be need to
be either R and Python because that is what Principal’s data scientist team is most familiar with.

7

2.1.4 Technology Considerations
There are no technology considerations of yet.

2.1.5 Security Considerations
There are no significant security considerations for our project. Our chosen approach doesn’t
require any communication with the internet or other computers, remaining entirely local.
Additionally, our approach doesn’t persist any sensitive information on the computer after
running. Thus any and all information involved is discarded after runtime. For these reasons we
do not have any further considerations for the security of the project.

2.1.6 Safety Considerations
There are also no significant safety considerations for our project. Our approach doesn’t contain
any sort of physical component, meaning there is no danger of physical harm to a user.
Additionally our project is meant to handle financial information and not any sort of safety-critical
data, so there is no danger of the results bringing about harm either. The worst that could
happen is a loss of money due to a poorly created model which we will of course be taking
precautions against using our testing plan in section 3. In any case, we have no further
considerations for injury in the use of our project.

2.1.7 Standards
There are very few standards the code we are creating must comply with. The code must be
able to communicate with SQL servers in order to gather and aggregate data. The code must
also be able to be accessed by programmers for their implementation.

8

2.1.8 Possible Risks and Risk Management

Table 1: Risk Description Chart

Table 2: Risk Consequences Mapping

Table 3: Risk Likelihood Mapping

9

Table 4: Risk Mapping from Likelihood and Consequence to Severity

Table 5: Risk Severity Mapping

2.1.9 Feasibility Assessment
Technical Feasibility
Our current scope of the project is creating a unified pipeline for Principal for their DRP 2.0. We
are working with the data science team of Principal and working with them on this project. Our
team will take existing processes that Principal have created and creating the unified pipeline
based off those processes and standardizing the inputs and outputs of each process.

With respect to the current state of the project, our project looks technically feasible. We are not
interacting or changing the different processes itself, and focused on what we can do which is
create a more organized pipeline for Principal.

Economic Feasibility
Please also look at 2.1.9 Cost Considerations. The only costs our project is incurring are travel
expenses, and the travel expenses look perfectly reasonable at this stage. Unless some major
change of scope happens during the project lifetime, currently our project is also economically
feasible.

Legal Feasibility
Looking at the current technologies we are using, we are focused on using open source tools
and the tools Principal are providing to our team. We expect to see no legal problems during our
project.

10

Operational Feasibility
The project scope is a the scope our team has chosen after carefully interviewing different
employees at Principal and thinking of plausible projects our team could do. We ended up on
deciding to narrow down the focus of the project on one of the many projects Principal has and
focus on creating a unified pipeline for that project.

Our project itself is also a prototype of what Principal could do or expand in the future, so it will
not impact or cause any problems for the current operations that Principal is using. Principal is
currently looking for a prototype not a proof of concept or an actual full scale product, so our
project satisfies the operational feasibility.

Scheduling Feasibility
We currently have two semesters to complete our project. As long as our team follows the
current schedule we have set and not encounter any major problems during phase 2 and 3 of
schedule, we foresee we will be able to finish our project on time.

2.1.10 Cost Considerations
Our project does not involve buying any software, hardware, physical parts, and etc.
The costs we do incur are all travel costs between traveling between Iowa State University and
Principal, which is located in Des Moines.
In total, our team believes we will make around 10 trips to Principal. The distance between Iowa
State and Principal is 38 miles. Our team needs two cars to travel to Principal. Parking at
Principal costs 3 dollars everytime we go there. Using the Standard mileage rates of 2018 which
is 0.545 USD per mile, one trip will cost 88.84 USD. Since we are making 10 trips, our costs
estimation will be 888.40 USD.

2.1.11 Proposed Milestones and Evaluation Criteria
● Investigate

○ Interview different data scientists that work at Principal to gather information
about their coding practices.

○ Research example code and find commonalities between them.
● Prototype

○ Taking information we receive from the interview process and create a prototype.
● Test

○ Run prototyped code with real simulation code.
○ Test for bugs and errors in code.
○ Fix and adjust any problems with code.

● Final Project
○ Present final product to Principal executives.

11

2.1.12 Project Tracking Procedures
The project management systems we chose to utilize are Gitlab issues and GroupMe. Using
Gitlab issues allows us to track progress of specific tasks by allowing us to assign tasks and
establish deadlines to each individual. Gitlab Issues allow us to also review tasks at our
bi-weekly meetings and help keep all team members on the same page. We also chose to use
GroupMe for instant messaging which allows for quicker communication between group
members.

2.2 Statement of Work

2.2.1 Task Objective
Our objective for this project is to take data manipulation and prediction processes currently
used by our client and more easily connect them with an automated pipeline. These include the
splitting of training and testing data from a chronological set, normalization, non-linear feature
engineering, cross validation, model creation, and of course prediction. The training data must
be kept safe from contamination due to the temporal nature of the desired predictions. Our
project will allow data scientists to quickly and easily create and test models using a variety of
parameters and without needing to write boilerplate code or worry about errors in the data
manipulation processes.

2.2.2 Task Approach
After discussing several alternatives, the approach we’ve decided on is to create a pipeline
framework to meet our objective. The pipeline will provide hooks along with a standardized
system of inputs and outputs that allow users to plug in the scripts they’d like to use for testing
with little hassle. We’ll develop the pipeline using Python, a common data science language.

Strengths:

1. Python is a common general purpose language
2. Python is already used by some of the client’s employees
3. Easy to plug in and swap various components
4. Allows client to focus on developing modules instead of the whole process at once
5. Saves a lot of boilerplate code for users

Weaknesses:

1. High level of parameterization needed could require verbose function calls or object
initialization

2. Requires users to learn a new set of functions to interface with

12

3. May require current script inputs and outputs to be changed to conform to the standard

Overall we feel that the strengths of this approach outweigh the weaknesses, and that other
approaches aren’t significant improvements (See Section 2.2.3). While users will have to learn
the set of functions we provide, this is true for really any solution we come up with for
automating processes. Similarly, there may be significant explicit configuration required
resulting in verbose code, but this is again true for any approach that wants to provide that level
of customization.

On the other hand, Python is a powerful general purpose language with significant popularity in
data science. Additionally the library will be easily integratable into the client’s current workflow,
as it should simply replace large blocks of code with a single lines that have the pipeline do the
rest of the work. The only barrier here is for current script practices to conform to the new
standard. To ease the transition we’ll make sure to spend ample time developing an intuitive
standard that can integrate with current scripts without too much modification.

The pipeline will automate much of the testing process shown below in Figure 1. The processes
and connections between them will run automatically, while using user-defined scripts at the
chosen interfacing points. There are also points at which data can be accessed and visualized if
desired.

The internals of the library will make heavy use of the other libraries our client is already making
use of including numpy, pandas, sklearn, and matplotlib. Each of these already implements a lot
of very useful functionality, so our library will mainly be focused on combining them to perform
larger tasks.

13

Figure 1: Pipeline Process Diagram with Interface Hooks

2.2.3 Alternative Approaches
The following consist of several approaches we considered but eventually rejected in favor of
our current plan.

Python/R Library

We considered meeting our objective by writing a library of data manipulation functionality
implemented in Python and/or R. The library would consist of high-level functions and objects
with a variety of parameters able to perform the necessary processes using single lines of code.

Strengths:

1. Python and R are very common languages used by data scientists
2. Python and R are already used by some of the client’s employees
3. Flexible functionality using object members and function parameters
4. Easily extendable by adding new calls
5. Easy to install and distribute

14

Weaknesses:
1. High level of parameterization needed could require verbose function calls or object

initialization
2. Requires users to learn a new set of functions to interface with

We decided not to go with this solution due to the modular approach Principal is currently taking
to develop new processes. While the concept of a library seems good, and our chosen solution
still takes a similar approach, it makes less sense to force users to connect all of their
components themselves. A simple library would require users to gather the various scripts they
want to test and add calls throughout them to get the desired interactions. We chose to go with
the pipeline solution which avoids this step.

Standalone Application

Another way we considered meeting our objective was by creating a standalone application that
could run various data manipulation processes through a UI. The user would feed data to the
application and choose the processes to be run on it. The UI would also allow for a significant
amount of custom configuration for users to adjust as needed.

Strengths:

1. Doesn’t require any coding to process data
2. Able to keep track of user preferences and state between sessions
3. Intuitive to use
4. Can easily save and reload models and results
5. Doesn’t require installation of dependencies
6. Doesn’t require user to use a particular language for other data manipulation

Weaknesses:

1. Difficult to feed results back into code
2. Unfamiliar concept for client’s employees
3. Additional functionality requires building more UI
4. Less platform independent
5. Doesn’t update along with packages automatically

We didn’t choose this approach mainly because our client wants the end product to be available
to many users easily and without a high learning curve. This application would require users to
learn an entirely new interface that doesn’t even mesh well with their existing workflows.
Normally data is passed almost exclusively through code, so adding an application that has to
import and export the data into the mix is somewhat awkward.

15

Browser Application

The final approach we considered was a browser application that could run all of the data
manipulation processes remotely. The user could upload data and choose processes to be run
on it. The application would provide a UI that could configure the processes as necessary.
These processes would then be run on a server and the results sent back to the user.

Strengths:

1. All processes can be run on a server with above average processing power and memory
2. Results can be saved remotely and shared with other users
3. Doesn’t require the user’s computer to be available while running
4. Doesn’t require coding to process data
5. Able to keep track of user preferences and state between sessions
6. Intuitive to use
7. Doesn’t require installation of dependencies
8. Doesn’t require user to use a particular language for other data manipulation

Weaknesses:

1. User must be online initially and to get the results
2. Big data must be uploaded and downloaded often
3. Difficult to feed results back into code
4. Unfamiliar concept for client’s employees
5. Additional functionality requires building more UI
6. Requires a server to be accessed from

Similar to the previous approach, the browser application was not chosen because of the
learning curve and adjustment to workflow required. With the added complication of uploading
and downloading the data, this approach could serious disrupt the flow of data without
significant benefits.

2.2.4 Expected Results
Once the project is complete, we expect to have a functioning Python pipeline that allows users
to test scripts modularly and to perform significant data manipulations such as engineering
nonlinear features, cross validation, or backtesting. This will be possible through a variety of
function calls made available to the user. By stringing a few of these calls together, we expect
the user to be able to create complex models able to predict responses based on the features
given.

The pipeline will be portable and easy to distribute. It will simply need to be added using a
package manager and then imported into the code to be used. Users can expect to be able to
use all the functionality immediately and with little hassle. The code will also be written

16

consistently and with maintainability in mind, allowing for new functionality to be added as
necessary in the future.

3 Testing and Implementation
There are primarily two parts to our plan to test our product: requirement testing and user
testing. The first will test each of the functional and non-functional requirements we have
defined for our deliverables, ensuring correctness of the algorithms, and adequate functionality
within its use context. The second will test our design and documentation for our users’
perceptions, ensuring that its use is intuitive and self-explanatory. Outcomes from either of
these test types could lead to reworking our product and retesting.

3.1 Requirements Testing
The primary goal of requirements testing is to ensure that our automation of tasks remains
correct (does not change the expected outputs for each simulation) and performs well within its
context.

3.1.1 Functional Testing
Examples include unit, integration, system, acceptance testing

1. Compare 10+ runs of rolling window calculations between our solution and the previous
method, varying selectable parameters, including, but not limited to:

a. Window train size
b. Window test size
c. Buffer size
d. Predictive model / algorithm
e. Each run should produce the same result from legacy code to new solution

2. The user can observe the output of the tests run in at least one manner.

3. Augment varying amounts of additional data to a partially-constructed model and reverify

the model’s functionality. The model must still functions with 5+ trials.

4. Run simulations with linear regression and at least two other models, verifying the
correctness of their results

5. Run 5+ simulations with data from each of FactSet and Bloomberg, verifying their results

17

3.1.2 Non-Functional Testing
Testing for performance, security, usability, compatibility

1. Benchmark the runtimes of rolling window iterations in both old scripts and new scripts
over tests for functional requirements and ensure that the runtime for the new version
isn’t longer (within a threshold)

2. Run a simulation with a data set of 2-5 Gb and verify it finishes.
3. Run a simulation over data consisting of > 100 features and > 1,000,000 observations,

verifying that it completes.
4. Test with 6+ data scientists, getting feedback to ensure the product does save them

time.

3.2 Usability Testing
Usability testing is paramount to our project because if the product we produce isn’t intuitive and
convenient to use, it will defeat one of its primary purposes of saving our users time.

3.2.1 Process
To test our library’s usability, we will be putting it in the hands of data scientists, especially the
members of Principal’s team whom we interviewed at the onset of the project. We will ask them
both to use it in their typical tasks and, if necessary, to try it in contexts and tasks that would
more thoroughly test its functionality. After a fixed length of time testing our product, we will
meet with them to elicit their feedback.

3.3 Results
No testing has been done in our project so far.

4 Estimated Resources and Timeline

4.1 Estimated Resources

4.1.1 Personnel Effort Requirements
Each team member is expected to put in around 7 hours a week for this project. Each hour of
work needs to be filled with hard work and focus in order for this project to succeed.

18

4.1.2 Other Resource Requirements
Other resources needed for this project are: previous code from the team before us, examples
of the different tests they run, and examples of the data format.

4.1.3 Financial Requirements
Since this project is a software only project, there is no cost needed for hardware or any special
equipment. The data needed for the project is provided by Principal at no cost.

4.2 Project Timeline

Table 6: Gantt Chart Part 1

19

Table 7: Gantt Chart Part 2

Table 8: Gantt Chart Part 3

20

Table 9: Gantt Chart Part 4

Our timeline is divided up into 4 phases. The first phase being the planning phase, the second
the first prototype phase, the third being the third prototype phase, and the final phase being
testing/documentation.

Phase 1
The first phase of our project involved planning out the design and functionality of our project.
One of the most important parts in this phase was the interviewing the employees of Principal.
Due to the scope of the project being vague at the start, our team needed to decide the scope of
the project before anything could start. After the interviews, the rest of phase one is focused on
trying to create a concise design for our project.

Phase 2
Phase 2 is where we start prototyping our design. Due to the nature of our project, the prototype
at this stage is focused on creating the unified pipelines for the first parts of the DRP 2.0.
Focusing on the data aggregation and data query parts, we will first create the prototype for
these components, constantly getting feedback from Principal and refining the project.

21

Phase 3
Phase 3 is the second phase of the prototype designs, focusing on the later parts of the DRP
2.0 processes. We will continue to focus on the creation of the unified pipeline here for the later
stages, and also work on the standardization of all the process in this phase too. Same as
phase 2, we will be in constant contact with Principal to continuing refining our prototype.
Towards the end of phase 3, we will work on bring all the different processes together in one
unified pipeline.

Phase 4
Phase 4 is the testing and documentation phase. For the first part of phase 4, we will focus on
testing our unified pipeline to make sure it works as intended. After testing has finished, we will
work on documentation of the pipeline and how it works. If we have time towards the end of
phase 4, we will also focus on working together with Principal to teach our clients how to use
our product.

5 Closing Material

5.1 Conclusion
This project aims to help the data science teams at Principal Financial work at a more efficient
pace by providing a pipeline, creating a unified way of aggregating data and running models on
that data.

Our team will create a pipeline framework that will automate some of the tasks Principal’s Data
Science team already does to allow them to save time on their redundant tasks, and to further
streamline their work. This will allow for consistency and less mistakes in the process of
aggregating data, constructing and running, and using the output from those models.

By following the steps outlined in this proposal, we can provide a more versatile and automated
system of predictive stock analysis for the data science teams at Principal Financial .

5.2 References
No references as of now.

5.3 Appendices
No appendices as of now.

