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1 Introductory Material 

1.1 Acknowledgement 
Team 06’s Faculty advisor: Srikanta Tirthapura 
Team 06’s client: Principal Financial, primarily Benjamin Harlander and Vishnu Vemuru 
Interviewed Data Scientists: Josh Zimmerman, … 
We would like to thank Srikanta Tirthapura for being our advisor and helping us out. 

1.2 Problem Statement 
Principal Financial recently has a team of data scientists and interns that work within their 
Global Investments Department to analyze equity data and help the company make better 
financial decisions. This team does not have a unified or consistent way of aggregating data and 
running models on data. This causes losses in time and efficiency. 
 
Some main contributors of inefficiency include: manual data aggregation done by one individual 
on the team for every other member, rewritten boilerplate code for common data manipulation 
processes, and unuseable scripts due to mistakes in data manipulation. 

 
Our task is to research effective tools and procedures for the data science team, and create a 
unified application that can be used by all members of the team to run prediction models on 
stock equity data. This solution needs to be easy to integrate into the current workflow for 
minimal disruption and save the company time by introducing standards and automation. 

1.3 Operating Environment 
The intended operating environment for this application will be the personal work computers 
used by the data scientists at Principal. The software environment for this application is 
something that is still flexible and needs to be established.  

1.4 Intended Users and Uses 
 The intended users of this project are the 11 data scientists already employed at Principal 
Financial and any future data scientists that will work alongside them. This means that this tool 
must be easy to grasp and must be intuitive for those experienced in data science. The uses of 
this product should be similar for all users: to take stock equity data and use it to model the 
most likely trajectory of those stocks. 
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1.5 Assumptions and Limitations 
 Assumptions: 

1. All data will come from either Factset or Bloomberg 
2. Users will have moderate experience with either Python or R  

Limitations: 
1. Most data scientists only know one of Python or R  

1.6 Expected End Product and Deliverables 
Our final expected end product will be a unified pipeline for the DRP 2.0, standardizing the 
process of how data is passed between each stage. 
The deliverables will be: 

1. The Unified Pipeline that will bring together DRP 2.0 
2. Documentation on how the unified pipeline works, and the data needed to be passed 

through at each stage. 
 

1.7 Related Work / Market Survey / Literature Review  
 
We looked into multiple libraries for both Python and R which previously existed with purposes 
similar to ours. Quantopian and Quatiacs are Python libraries for quantitative data analysis. 
Another library, caret (Classification And REgression Training), exists for creating predictive 
models of data in R. 
 
Although these tools overlap to some extent to ours, we have begun to identify how our project 
has a niche which is independent from these other tools while finding inspiration and guidance 
from their similarities.  
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2 Specifications and Analysis 

2.1   Proposed Approach 

2.1.1   Functional Requirements 
The project has the following five main functional requirements: 

1. It should be able to run a selectable number of iterations of rolling window calculations 
automatically with a user-defined prediction model 

2. It will be able to import/export results 
3. It will be possible to augment the model with new data if needed (no need to rerun the 

model with new data) 
4. It should be able to fit various machine learning models, including linear regression 
5. It will be able to use data from multiple sources 

2.1.2   Non-Functional Requirements 
1. (Performance) Should not lengthen runtime of a single iteration of rolling window 

calculations 
2. (Performance) Should be able to handle up to several GB of data 
3. (Performance) Should be able to handle millions of observations and hundreds of 

columns 
4. (Usability) Faster to use than their existing method of manually finding data and inputting 

it into models 

2.1.3   Constraints Considerations 
 The program languages Principal primary uses is R and Python. Our program will be need to 
be either R and Python because that is what Principal’s data scientist team is most familiar with. 
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2.1.4   Technology Considerations 
There are no technology considerations of yet. 

2.1.5   Security Considerations 
There are no significant security considerations for our project. Our chosen approach doesn’t 
require any communication with the internet or other computers, remaining entirely local. 
Additionally, our approach doesn’t persist any sensitive information on the computer after 
running. Thus any and all information involved is discarded after runtime. For these reasons we 
do not have any further considerations for the security of the project. 

2.1.6   Safety Considerations 
There are also no significant safety considerations for our project. Our approach doesn’t contain 
any sort of physical component, meaning there is no danger of physical harm to a user. 
Additionally our project is meant to handle financial information and not any sort of safety-critical 
data, so there is no danger of the results bringing about harm either. The worst that could 
happen is a loss of money due to a poorly created model which we will of course be taking 
precautions against using our testing plan in section 3. In any case, we have no further 
considerations for injury in the use of our project.  

2.1.7   Standards 
There are very few standards the code we are creating must comply with. The code must be 
able to communicate with SQL servers in order to gather and aggregate data. The code must 
also be able to be accessed by programmers for their implementation. 
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2.1.8   Possible Risks and Risk Management 

 
Table 1: Risk Description Chart 
 

 
Table 2: Risk Consequences Mapping 

 
Table 3: Risk Likelihood Mapping 
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Table 4: Risk Mapping from Likelihood and Consequence to Severity 

 
Table 5: Risk Severity Mapping 

2.1.9   Feasibility Assessment 
Technical Feasibility 
Our current scope of the project is creating a unified pipeline for Principal for their DRP 2.0. We 
are working with the data science team of Principal and working with them on this project. Our 
team will take existing processes that Principal have created and creating the unified pipeline 
based off those processes and standardizing the inputs and outputs of each process. 
 
With respect to the current state of the project, our project looks technically feasible. We are not 
interacting or changing the different processes itself, and focused on what we can do which is 
create a more organized pipeline for Principal. 
 
Economic Feasibility 
Please also look at 2.1.9 Cost Considerations. The only costs our project is incurring are travel 
expenses, and the travel expenses look perfectly reasonable at this stage. Unless some major 
change of scope happens during the project lifetime, currently our project is also economically 
feasible.  
 
Legal Feasibility 
Looking at the current technologies we are using, we are focused on using open source tools 
and the tools Principal are providing to our team. We expect to see no legal problems during our 
project. 
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Operational Feasibility 
The project scope is a the scope our team has chosen after carefully interviewing different 
employees at Principal and thinking of plausible projects our team could do. We ended up on 
deciding to narrow down the focus of the project on one of the many projects Principal has and 
focus on creating a unified pipeline for that project.  
 
Our project itself is also a prototype of what Principal could do or expand in the future, so it will 
not impact or cause any problems for the current operations that Principal is using. Principal is 
currently looking for a prototype not a proof of concept or an actual full scale product, so our 
project satisfies the operational feasibility. 
 
Scheduling Feasibility 
We currently have two semesters to complete our project. As long as our team follows the 
current schedule we have set and not encounter any major problems during phase 2 and 3 of 
schedule, we foresee we will be able to finish our project on time. 

2.1.10   Cost Considerations 
Our project does not involve buying any software, hardware, physical parts, and etc. 
The costs we do incur are all travel costs between traveling between Iowa State University and 
Principal, which is located in Des Moines. 
In total, our team believes we will make around 10 trips to Principal. The distance between Iowa 
State and Principal is 38 miles. Our team needs two cars to travel to Principal. Parking at 
Principal costs 3 dollars everytime we go there. Using the Standard mileage rates of 2018 which 
is 0.545 USD per mile, one trip will cost 88.84 USD. Since we are making 10 trips, our costs 
estimation will be 888.40 USD.  

2.1.11   Proposed Milestones and Evaluation Criteria 
● Investigate 

○ Interview different data scientists that work at Principal to gather information 
about their coding practices. 

○ Research example code and find commonalities between them. 
● Prototype 

○ Taking information we receive from the interview process and create a prototype. 
● Test 

○ Run prototyped code with real simulation code. 
○ Test for bugs and errors in code. 
○ Fix and adjust any problems with code. 

● Final Project 
○ Present final product to Principal executives. 
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2.1.12   Project Tracking Procedures 
The project management systems we chose to utilize are Gitlab issues and GroupMe. Using 
Gitlab issues allows us to track progress of specific tasks by allowing us to assign tasks and 
establish deadlines to each individual. Gitlab Issues allow us to also review tasks at our 
bi-weekly meetings and help keep all team members on the same page. We also chose to use 
GroupMe for instant messaging which allows for quicker communication between group 
members. 

2.2   Statement of Work 

2.2.1   Task Objective 
Our objective for this project is to take data manipulation and prediction processes currently 
used by our client and more easily connect them with an automated pipeline. These include the 
splitting of training and testing data from a chronological set, normalization, non-linear feature 
engineering, cross validation, model creation, and of course prediction. The training data must 
be kept safe from contamination due to the temporal nature of the desired predictions. Our 
project will allow data scientists to quickly and easily create and test models using a variety of 
parameters and without needing to write boilerplate code or worry about errors in the data 
manipulation processes. 

2.2.2   Task Approach 
After discussing several alternatives, the approach we’ve decided on is to create a pipeline 
framework to meet our objective. The pipeline will provide hooks along with a standardized 
system of inputs and outputs that allow users to plug in the scripts they’d like to use for testing 
with little hassle. We’ll develop the pipeline using Python, a common data science language.  
 
Strengths: 

1. Python is a common general purpose language 
2. Python is already used by some of the client’s employees 
3. Easy to plug in and swap various components 
4. Allows client to focus on developing modules instead of the whole process at once 
5. Saves a lot of boilerplate code for users 

 
Weaknesses: 

1. High level of parameterization needed could require verbose function calls or object 
initialization 

2. Requires users to learn a new set of functions to interface with 
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3. May require current script inputs and outputs to be changed to conform to the standard 
 
Overall we feel that the strengths of this approach outweigh the weaknesses, and that other 
approaches aren’t significant improvements (See Section 2.2.3). While users will have to learn 
the set of functions we provide, this is true for really any solution we come up with for 
automating processes. Similarly, there may be significant explicit configuration required 
resulting in verbose code, but this is again true for any approach that wants to provide that level 
of customization.  
 
On the other hand, Python is a powerful general purpose language with significant popularity in 
data science. Additionally the library will be easily integratable into the client’s current workflow, 
as it should simply replace large blocks of code with a single lines that have the pipeline do the 
rest of the work. The only barrier here is for current script practices to conform to the new 
standard. To ease the transition we’ll make sure to spend ample time developing an intuitive 
standard that can integrate with current scripts without too much modification. 
 
The pipeline will automate much of the testing process shown below in Figure 1. The processes 
and connections between them will run automatically, while using user-defined scripts at the 
chosen interfacing points. There are also points at which data can be accessed and visualized if 
desired. 
 
The internals of the library will make heavy use of the other libraries our client is already making 
use of including numpy, pandas, sklearn, and matplotlib. Each of these already implements a lot 
of very useful functionality, so our library will mainly be focused on combining them to perform 
larger tasks.  
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Figure 1: Pipeline Process Diagram with Interface Hooks 

2.2.3   Alternative Approaches 
The following consist of several approaches we considered but eventually rejected in favor of 
our current plan. 
 
Python/R Library 
 
We considered meeting our objective by writing a library of data manipulation functionality 
implemented in Python and/or R. The library would consist of high-level functions and objects 
with a variety of parameters able to perform the necessary processes using single lines of code.  
 
Strengths: 

1. Python and R are very common languages used by data scientists 
2. Python and R are already used by some of the client’s employees 
3. Flexible functionality using object members and function parameters 
4. Easily extendable by adding new calls 
5. Easy to install and distribute 
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Weaknesses: 
1. High level of parameterization needed could require verbose function calls or object 

initialization 
2. Requires users to learn a new set of functions to interface with 

 
We decided not to go with this solution due to the modular approach Principal is currently taking 
to develop new processes. While the concept of a library seems good, and our chosen solution 
still takes a similar approach, it makes less sense to force users to connect all of their 
components themselves. A simple library would require users to gather the various scripts they 
want to test and add calls throughout them to get the desired interactions. We chose to go with 
the pipeline solution which avoids this step. 
 
Standalone Application 
 
Another way we considered meeting our objective was by creating a standalone application that 
could run various data manipulation processes through a UI. The user would feed data to the 
application and choose the processes to be run on it. The UI would also allow for a significant 
amount of custom configuration for users to adjust as needed.  
 
Strengths: 

1. Doesn’t require any coding to process data 
2. Able to keep track of user preferences and state between sessions 
3. Intuitive to use 
4. Can easily save and reload models and results 
5. Doesn’t require installation of dependencies 
6. Doesn’t require user to use a particular language for other data manipulation 

 
Weaknesses: 

1. Difficult to feed results back into code 
2. Unfamiliar concept for client’s employees 
3. Additional functionality requires building more UI 
4. Less platform independent 
5. Doesn’t update along with packages automatically 

 
We didn’t choose this approach mainly because our client wants the end product to be available 
to many users easily and without a high learning curve. This application would require users to 
learn an entirely new interface that doesn’t even mesh well with their existing workflows. 
Normally data is passed almost exclusively through code, so adding an application that has to 
import and export the data into the mix is somewhat awkward.  
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Browser Application 
 
The final approach we considered was a browser application that could run all of the data 
manipulation processes remotely. The user could upload data and choose processes to be run 
on it. The application would provide a UI that could configure the processes as necessary. 
These processes would then be run on a server and the results sent back to the user.  
 
Strengths: 

1. All processes can be run on a server with above average processing power and memory 
2. Results can be saved remotely and shared with other users 
3. Doesn’t require the user’s computer to be available while running 
4. Doesn’t require coding to process data 
5. Able to keep track of user preferences and state between sessions 
6. Intuitive to use 
7. Doesn’t require installation of dependencies 
8. Doesn’t require user to use a particular language for other data manipulation 

 
Weaknesses: 

1. User must be online initially and to get the results 
2. Big data must be uploaded and downloaded often 
3. Difficult to feed results back into code 
4. Unfamiliar concept for client’s employees 
5. Additional functionality requires building more UI 
6. Requires a server to be accessed from 

 
Similar to the previous approach, the browser application was not chosen because of the 
learning curve and adjustment to workflow required. With the added complication of uploading 
and downloading the data, this approach could serious disrupt the flow of data without 
significant benefits.  

2.2.4   Expected Results 
Once the project is complete, we expect to have a functioning Python pipeline that allows users 
to test scripts modularly and to perform significant data manipulations such as engineering 
nonlinear features, cross validation, or backtesting. This will be possible through a variety of 
function calls made available to the user. By stringing a few of these calls together, we expect 
the user to be able to create complex models able to predict responses based on the features 
given.  
 
The pipeline will be portable and easy to distribute. It will simply need to be added using a 
package manager and then imported into the code to be used. Users can expect to be able to 
use all the functionality immediately and with little hassle. The code will also be written 
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consistently and with maintainability in mind, allowing for new functionality to be added as 
necessary in the future.  

3 Testing and Implementation 
There are primarily two parts to our plan to test our product: requirement testing and user 
testing. The first will test each of the functional and non-functional requirements we have 
defined for our deliverables, ensuring correctness of the algorithms, and adequate functionality 
within its use context. The second will test our design and documentation for our users’ 
perceptions, ensuring that its use is intuitive and self-explanatory. Outcomes from either of 
these test types could lead to reworking our product and retesting. 

3.1 Requirements Testing 
The primary goal of requirements testing is to ensure that our automation of tasks remains 
correct (does not change the expected outputs for each simulation) and performs well within its 
context. 

3.1.1   Functional Testing 
Examples include unit, integration, system, acceptance testing 
 

1. Compare 10+ runs of rolling window calculations between our solution and the previous 
method, varying selectable parameters, including, but not limited to: 

a. Window train size 
b. Window test size 
c. Buffer size 
d. Predictive model / algorithm 
e. Each run should produce the same result from legacy code to new solution 

 
2. The user can observe the output of the tests run in at least one manner. 

 
3. Augment varying amounts of additional data to a partially-constructed model and reverify 

the model’s functionality. The model must still functions with 5+ trials. 
 

4. Run simulations with linear regression and at least two other models, verifying the 
correctness of their results 

 
5. Run 5+ simulations with data from each of FactSet and Bloomberg, verifying their results 
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3.1.2   Non-Functional Testing 
Testing for performance, security, usability, compatibility 
 

1. Benchmark the runtimes of rolling window iterations in both old scripts and new scripts 
over tests for functional requirements and ensure that the runtime for the new version 
isn’t longer (within a threshold) 

2. Run a simulation with a data set of 2-5 Gb and verify it finishes. 
3. Run a simulation over data consisting of > 100 features and > 1,000,000 observations, 

verifying that it completes. 
4. Test with 6+ data scientists, getting feedback to ensure the product does save them 

time. 

3.2 Usability Testing 
Usability testing is paramount to our project because if the product we produce isn’t intuitive and 
convenient to use, it will defeat one of its primary purposes of saving our users time. 

3.2.1   Process 
To test our library’s usability, we will be putting it in the hands of data scientists, especially the 
members of Principal’s team whom we interviewed at the onset of the project. We will ask them 
both to use it in their typical tasks and, if necessary, to try it in contexts and tasks that would 
more thoroughly test its functionality. After a fixed length of time testing our product, we will 
meet with them to elicit their feedback. 

3.3   Results 
No testing has been done in our project so far. 

4 Estimated Resources and Timeline  

4.1   Estimated Resources 

4.1.1 Personnel Effort Requirements 
Each team member is expected to put in around 7 hours a week for this project. Each hour of 
work needs to be filled with hard work and focus in order for this project to succeed. 
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4.1.2 Other Resource Requirements 
Other resources needed for this project are: previous code from the team before us, examples 
of the different tests they run, and examples of the data format. 

4.1.3 Financial Requirements 
Since this project is a software only project, there is no cost needed for hardware or any special 
equipment. The data needed for the project is provided by Principal at no cost. 

4.2   Project Timeline 

 
Table 6: Gantt Chart Part 1 
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Table 7: Gantt Chart Part 2 

 
Table 8: Gantt Chart Part 3 
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Table 9: Gantt Chart Part 4 
 
 
Our timeline is divided up into 4 phases. The first phase being the planning phase, the second 
the first prototype phase, the third being the third prototype phase, and the final phase being 
testing/documentation. 
 
Phase 1 
The first phase of our project involved planning out the design and functionality of our project. 
One of the most important parts in this phase was the interviewing the employees of Principal. 
Due to the scope of the project being vague at the start, our team needed to decide the scope of 
the project before anything could start. After the interviews, the rest of phase one is focused on 
trying to create a concise design for our project. 
 
Phase 2 
Phase 2 is where we start prototyping our design. Due to the nature of our project, the prototype 
at this stage is focused on creating the unified pipelines for the first parts of the DRP 2.0. 
Focusing on the data aggregation and data query parts, we will first create the prototype for 
these components, constantly getting feedback from Principal and refining the project. 
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Phase 3 
Phase 3 is the second phase of the prototype designs, focusing on the later parts of the DRP 
2.0 processes. We will continue to focus on the creation of the unified pipeline here for the later 
stages, and also work on the standardization of all the process in this phase too. Same as 
phase 2, we will be in constant contact with Principal to continuing refining our prototype. 
Towards the end of phase 3, we will work on bring all the different processes together in one 
unified pipeline. 
 
Phase 4 
Phase 4 is the testing and documentation phase. For the first part of phase 4, we will focus on 
testing our unified pipeline to make sure it works as intended. After testing has finished, we will 
work on documentation of the pipeline and how it works. If we have time towards the end of 
phase 4, we will also focus on working together with Principal to teach our clients how to use 
our product. 

5 Closing Material 

5.1 Conclusion 
This project aims to help the data science teams at Principal Financial work at a more efficient 
pace by providing a pipeline, creating a unified way of aggregating data and running models on 
that data. 
 
Our team will create a pipeline framework that will automate some of the tasks Principal’s Data 
Science team already does to allow them to save time on their redundant tasks, and to further 
streamline their work. This will allow for consistency and less mistakes in the process of 
aggregating data, constructing and running, and using the output from those models. 
  
By following the steps outlined in this proposal, we can provide a more versatile and automated 
system of predictive stock analysis for the data science teams at Principal Financial . 

5.2 References 
No references as of now. 

  

5.3 Appendices 
No appendices as of now. 

 


