

Quantitative Research
Modeling Library

Project Plan v3

Team

sdMay19-06

Team Members
Josiah Anderson -- Meeting Facilitator

Doh Yun Kim -- Scribe
Gabriel Klein -- Report Manager

Drake Mossman -- Communication Manager
Jacob Richards -- Quality Assurance Manager

Nathan Schaffer -- Overseer

Client
Joseph Byrum

(Principal Financial Group)

Advisor
Srikanta Tirthapura

Contact

sdmay19-06@iastate.edu
https://sdmay19-06.sd.ece.iastate.edu

Last Updated

2 December 2018

https://sdmay19-06.sd.ece.iastate.edu/

sdMay19-06 1

Table of Contents

Table of Contents 1

List of Figures 3

List of Tables 3

1 Introductory Material 4
1.1 Acknowledgement 4
1.2 Problem Statement 4
1.3 Operating Environment 5
1.4 User Interface Description 5
1.5 Assumptions and Limitations 5
1.6 Expected End Product and Deliverables 6
1.7 Related Work / Market Survey / Literature Review 6

2 Specifications and Analysis 7

2.1 Proposed Approach 7
2.1.1 Functional Requirements 7
2.1.2 Non-Functional Requirements 8
2.1.3 Constraints Considerations 8
2.1.4 Technology Considerations 8
2.1.5 Security Considerations 8
2.1.6 Safety Considerations 9
2.1.7 Standards 9
2.1.8 Possible Risks and Risk Management 10
2.1.9 Feasibility Assessment 12
2.1.10 Cost Considerations 13
2.1.11 Proposed Milestones and Evaluation Criteria 13
2.1.12 Project Tracking Procedures 13

2.2 Statement of Work 14
2.2.1 Task Objective 14
2.2.2 Task Approach 14
2.2.3 Alternative Approaches 16
2.2.4 Expected Results 17

3 Testing and Implementation 18
3.1 Requirements Testing 18

sdMay19-06 2

3.1.1 Functional Testing 18
3.1.2 Non-Functional Testing 19

3.2 Usability Testing 19
3.2.1 Process 19

3.3 Results 19

4 Estimated Resources and Timeline 19
4.1 Estimated Resources 19

4.1.1 Personnel Effort Requirements 19
4.1.2 Other Resource Requirements 20
4.1.3 Financial Requirements 20

4.2 Project Timeline 20
4.3 Work Breakdown Structure 22

5 Closing Material 23
5.1 Conclusion 23
5.2 References 24

sdMay19-06 3

List of Figures
Figure 1: Pipeline Process Diagram with Interface Hooks
Figure 2: Work Breakdown Structure

List of Tables
Table 1: Risk Description Chart
Table 2: Risk Consequences Mapping
Table 3: Risk Likelihood Mapping
Table 4: Risk Mapping from Likelihood and Consequence to Severity
Table 5: Risk Severity Mapping
Table 6: Gantt Chart Part 1
Table 7: Gantt Chart Part 2
Table 8: Gantt Chart Part 3
Table 9: Gantt Chart Part 4

sdMay19-06 4

1 Introductory Material

1.1 Acknowledgement
Team 06’s Faculty advisor: Srikanta Tirthapura
Team 06’s client: Principal Financial, primarily Benjamin Harlander and Vishnu Vemuru
Interviewed Data Scientists: Josh Zimmerman, Q Mabasa, Krisoye Smith,

 Yaoliang He, Markus Sauter
We would like to thank Srikanta Tirthapura for being our advisor and aiding us in this project.

1.2 Problem Statement
Principal Financial has a relatively new team of data scientists and interns who work within their
Global Investments Department. The goal of this team is to analyze equity data to develop new
quantitative strategies the company can use to make informed investment decisions. This team
does not have much consistency or standardization in many of their common tasks, which slows
down productivity and leaves excessive room for error by requiring duplication of efforts by
individuals working on different yet overlapping tasks. Through interviewing members of the
data science team at Principal Financial, we found three main areas where the process (or
processes) being used were not optimal.

- The first area was in the aggregation of stock level data to the portfolio level. This
process can be very time consuming, especially for less experienced team members.
Nearly every project involves data aggregation and it is often done many many times
within the life of one project.

- The second area was in the handling of predictive models. A lot of similar models are
used on multiple projects, and currently they are being rewritten for each new project.
This causes some duplicity that could be reduced.

- The third area is in the visualization of the data. Currently there is not a lot of visibility
into the individual steps of the process used to create prediction models for stock data.

The inefficiencies in these three areas existed across many of the projects handled by the
equities team at Principal, but for the scope of this project we decided to focus our efforts into
solving these problems for one process specifically. Multiple student teams across the United
States are working on the Dynamic Risk Premium 2.0, which from now on will be referred to as
DRP 2.0. The goal of the DRP 2.0 is to create predictive models for stock data using machine
learning models. Our task is to create a uniform software pipeline that can be used to connect
each of the various components in this multi-step process. This solution needs to be easy to
integrate into the current workflow for minimal disruption and save the company time by

sdMay19-06 5

introducing standards and automation. Our hope is to create a flexible, user-friendly pipeline
that can be used for projects across Principal’s Global Investments team.

1.3 Operating Environment
Since our project is entirely software-defined, the operating environment is defined by the
systems it may run on and the data which it will be manipulating.

During our current development, our working environment is an AWS server we have been
given access to, which contains decades of weekly and monthly stock data up to August 2018.
The data is static, since it hasn’t been updated for months. While it is mostly complete data,
there are a few anomalies with NaN values that must be taken into consideration.

We anticipate the final environment of our library to be work computers within Principal’s data
science teams and servers running automatically scheduled tasks. When the operating
environment is individual computers, the data may come from a local csv containing some view
into a more expansive database, or it could come from a more direct database connection within
the same script. Once DRP 2.0 moves past the prototype stage within Principal, parts of our
library will likely be utilized in automatic tasks to predict the performance of current stocks given
weekly-updated data. We expect the list of factors, companies involved, and completeness of
the data for both of these cases to be fundamentally similar to those of the database we are
working with now.

1.4 User Interface Description
DRP 2.0 will take the form of both a Python library and an R package wrapping a range of
functions for data manipulation and aggregation within the predictive modeling domain. This
library will be used by data scientists within our client’s team at Principal Financial as well as
student groups and interns which this team commonly works with. Users will have a range of
abilities in programming, data science, and quant research. For this reason we will strive to write
function interfaces which are intuitive and don’t require excessive work to set up arguments. We
also want to strive for flexibility, anticipating ways the pipeline may be adapted in the future,
without obscuring the interface for the most common use cases. Users will also be interacting
with our API and other documentation we create to help guide them in how to utilize our library
for various purposes.

1.5 Assumptions and Limitations
 Assumptions:

1. All data will be reachable through a SQL database consisting of stock level data taken
from Factset and Bloomberg.

2. Users will have basic knowledge of either Python or R.
3. Users will have access to a personal computer to run scripts on.

sdMay19-06 6

Limitations:
1. Some data scientists using the pipeline may not be expert programmers.
2. Some data scientists may know either Python or R well but not both.
3. There exist already completed components with standardized inputs and outputs.

1.6 Expected End Product and Deliverables
Our final expected end product will be a unified pipeline for the DRP 2.0, standardizing the
process of how data is passed between each stage.

The deliverables will be:

1. The DRP 2.0 pipeline framework as Python/R packages
2. Documentation on using the pipeline’s functionality for each version of the library

DRP 2.0 Pipeline
The pipeline will allow a user to perform data science functions by taking raw stock level data
from a database and transforming it into portfolio simulations and predictions using user input.
The user will be able to specify the stock universe, portfolio strategies, prediction models, and
factor policies among other variables to run different simulations and see different predictions. It
will be implemented in Python and be accessible as both a Python package as written and as
an R package through a wrapper. There will also be a number of places where diagnostic or
similar interfaces can examine the data as it’s being processed for visualization and
examination. This deliverable will be delivered on May 10th, 2019 as the Spring semester ends.

Documentation
The documentation for the pipeline will consist of guides for using either the Python or R
packages. Each will contain essentially the same material, with potentially different function
names or argument types as the languages differ in requirements. They will cover all relevant
functions and data types necessary for a user to operate the pipeline from start to finish. Both
will be delivered as pdf documents for users to browse as necessary while using the packages.
This deliverable will also be delivered on May 10th, 2019 as the Spring semester ends.

1.7 Related Work / Market Survey / Literature Review
The desire for creation of the DRP 2.0, for which we are designing a pipeline, is directly caused
by shortcomings of the DRP, a previous product of Principal Financial. The DRP’s purpose,
similar to its successor, was to utilize a multiplicity of descriptive factors and predictive models
to accurately and consistently predict future performance of stocks, ultimately aiding portfolio
management decisions. The primary features of this product which the company hopes to
improve in DRP 2.0 include flexibility and scalability. Our research into the functionality of the
current DRP consisted of reading through internal Principal Financial documents describing it.

sdMay19-06 7

Although DRP 2.0 directly builds on the functionality of DRP, we will not be reusing any code,
but are rather starting our work on the DRP 2.0 pipeline as a greenfield project. Some of the
dashboards and applications that will interact with the pipeline may or may not be built upon
previous work in the DRP, but that doesn’t affect our project since we are only concerned with
defining the interfaces with these applications.

Beyond research into the previous version of the DRP, our team investigated competitor
products with similar purposes to the DRP 2.0. We looked into products for both Python and R
which previously existed with purposes similar to ours. Quantopian and Quantiacs are Python
libraries for quantitative data analysis. Another library, caret (Classification And REgression
Training), exists for creating predictive models of data in R.

After looking through tutorials and the API for Quantopian [1], we discovered a surprising
amount of similarities between its functionality and the the requirements for DRP 2.0.
Specifically, Quantopian presents itself as a Python toolkit with functions for testing predictive
models. It offers its users a select set of historical data, including minute intervals of trading
summaries and some corporate fundamental data for free, with additional data available with
subscription. Functions within the library are individually documented in addition to overarching
guidance for how to use their library, IDE, and data. While there is significant feature overlap
between Quantopian and DRP 2.0, DRP 2.0 will provide benefit to Principal by allowing more
specific customization of function parameters, the ability to work in either R or Python, and a
disassociation with external datasets or code which isn’t open-source.

Caret is an open-source package for R that streamlines and standardizes common tasks in the
creation of predictive models [2]. Unlike DRP 2.0 and Quantopian, caret is not specific to the
financial sector. Rather, it has functions which can be applied to a plethora of predictive
modeling contexts. For this reason, its documentation, though thorough, is also more broad than
that of Quantopian. Principal already uses this library in some of their research and
development. Because of the open source nature of the package, we may be able to also utilize
some of its interfaces and structure as guidance when creating our pipeline.

2 Specifications and Analysis

2.1 Proposed Approach

2.1.1 Functional Requirements
1. The pipeline will consume raw stock level data from an AWS Postgres database
2. The pipeline will be able to aggregate data to factor portfolios

sdMay19-06 8

3. The pipeline will be able to build models on factor portfolios, generate predictions, and
calculate model performance

4. The pipeline will be able to score stocks using a factor policy
5. The pipeline will be able to simulate portfolio returns
6. Users will be able to customize the stock universe, factor portfolio strategies, model

algorithms, and factor policy of the DRP 2.0 pipeline
7. Each function of the pipeline shall be able to be called and run independently
8. The pipeline will be able to handle missing or invalid stock level data
9. It will be able to interface with the DRP 2.0 dashboards
10. It will be able to run in both Python and R

2.1.2 Non-Functional Requirements
1. (Performance) The pipeline will be able to handle up to several GB of data
2. (Performance) The pipeline should be able to handle millions of observations and

hundreds of factors
3. (Maintainability) The pipeline will have documented and standardized inputs and outputs

for each of its functions and interfaces
4. (Usability) The pipeline interfaces will be intuitive to a novice data scientist
5. (Accessibility) The pipeline will be useable by novice programmers
6. (Security) The pipeline will not leak confidential data to outside sources
7. (Compatibility) The pipeline will be able to perform the same functionality as provided

existing scripts

2.1.3 Constraints Considerations
The programming languages primarily used by data scientists within our client’s team are R and
Python. The interface of our program/library will be need to be either R and Python because that
is what Principal’s data scientist team is most familiar with.

2.1.4 Technology Considerations
We have few technology considerations for this project. It will need to be able to run on our
client’s work computers primarily, which means it can’t be immensely computationally heavy.
However, the client’s current scripts do not put significant strain on the machines, and we don’t
expect our project to either. As mentioned in the constraints section, our client’s employees are
most familiar with Python and R, so we will focus on these languages if they need to be
exposed directly to the code.

2.1.5 Security Considerations
There are no significant security considerations for our project. Our chosen approach doesn’t
require any communication with the internet or other computers, remaining entirely local.

sdMay19-06 9

Additionally, our approach doesn’t persist any sensitive information on the computer after
running. Thus any and all information involved is discarded after runtime. For these reasons we
do not have any further considerations for the security of the project.

2.1.6 Safety Considerations
There are also no significant safety considerations for our project. Our approach doesn’t contain
any sort of physical component, meaning there is no danger of physical harm to a user.
Additionally our project is meant to handle financial information and not any sort of safety-critical
data, so there is no danger of the results bringing about harm either. The worst that could
happen is a loss of money due to a poorly created model which we will of course be taking
precautions against using our testing plan in section 3. In any case, we have no further
considerations for injury in the use of our project.

2.1.7 Standards
As our project is solely software based and also exclusively for use by our client internally, there
are no standards we are explicitly required to follow. That said there are a few standards we
have encountered that would still be useful for us to at least take guidance from.

IEEE 12207-2017 - ISO/IEC/IEEE International Standard - Systems and software
engineering--Software life cycle processes
This standard defines a framework of processes for developing a software system among other
activities. It’s intended to be customized for the user’s specific purpose, and doesn’t include
specific details for many of the processes it mentions. Instead it gives the purpose, outcomes,
and tasks associated with each process in general and leaves it to the user to define the way it
will be applied to their project [3].

IEEE 29119-4-2015 - ISO/IEC/IEEE International Standard - Software and systems
engineering--Software testing--Part 4: Test techniques
This standard is about the various test techniques and test coverages that are used during the
development of a software. It intends to help educate testers, test managers, and developers on
different test techniques and the appropriate situations to use them. It is divided into the test
design techniques one can use and the test coverages one should use for each test [4].

IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and
Validation
This standard defines processes for verifying and validating (V&V) software projects such as
ours. Additionally it allows for four levels of desired integrity, and each only requires certains
parts of the whole set of processes. There are also guidelines for documentation for
accountability. This standard is intended to help make sure the project is acceptable for the
client and meets all desire requirements [5].

sdMay19-06 10

While each of these standards contains a lot of useful detail applicable to our project, they are
also all very complex and likely very difficult for our small team to implement. It would take our
team several weeks of work simply to understand and begin using the entirety of each
document as they each are dozens if not hundreds of pages long. They also require defining
many of the processes as they are only frameworks. These standards seem more fit to be used
by a much larger team with a dedicated managerial staff. That said, we may reference them and
use bits and pieces without conforming to the standards explicitly.

2.1.8 Possible Risks and Risk Management

Table 1: Risk Description Chart

sdMay19-06 11

Table 2: Risk Consequences Mapping

Table 3: Risk Likelihood Mapping

 Consequence

Likelihood 1 2 3 4 5

A M S S H H

B L M S H H

C L M M S H

D L L M S H

E L L L M S

Table 4: Risk Mapping from Likelihood and Consequence to Severity

Table 5: Risk Severity Mapping

sdMay19-06 12

2.1.9 Feasibility Assessment
Technical Feasibility
Our current scope of the project is creating a unified pipeline for Principal for their DRP 2.0. We
are working with the data science team of Principal and working with them on this project. Our
team will take existing processes that Principal has created and create the unified pipeline
based off those processes and standardizing the inputs and outputs of each process.

With respect to the current state of the project, our project looks technically feasible. We are not
interacting or changing the different processes itself, and focused on what we can do which is
create a more organized pipeline for Principal.

Economic Feasibility
Please also look at 2.1.9 Cost Considerations. The only costs our project is incurring are travel
expenses, and the travel expenses look perfectly reasonable at this stage. Unless some major
change of scope happens during the project lifetime, currently our project is economically
feasible.

Legal Feasibility
Looking at the current technologies we are using, we are focused on using open source tools
and the tools Principal are providing to our team. We expect to see no legal problems during our
project.

Operational Feasibility
The project scope is a the scope our team has chosen after carefully interviewing different
employees at Principal and thinking of plausible projects our team could do. We ended up on
deciding to narrow down the focus of the project on one of the many projects Principal has and
focus on creating a unified pipeline for that project.

Our project itself is also a prototype of what Principal could do or expand in the future, so it will
not impact or cause any problems for the current operations that Principal is using. Principal is
currently looking for a prototype not a proof of concept or an actual full scale product, so our
project satisfies the operational feasibility.

Scheduling Feasibility
We currently have two semesters to complete our project. As long as our team follows the
current schedule we have set and not encounter any major problems during phase 2 and 3 of
schedule, we foresee we will be able to finish our project on time.

sdMay19-06 13

2.1.10 Cost Considerations
Our project does not involve buying any software, hardware, physical parts, and etc.
The costs we do incur are all travel costs between traveling between Iowa State University and
Principal, which is located in Des Moines.
In total, our team believes we will make around 10 trips to Principal. The distance between Iowa
State and Principal is 38 miles. Our team needs two cars to travel to Principal. Parking at
Principal costs 3 dollars everytime we go there. Using the Standard mileage rates of 2018 which
is 0.545 USD per mile, one trip will cost 88.84 USD. Since we are making 10 trips, our costs
estimation will be 888.40 USD.

2.1.11 Proposed Milestones and Evaluation Criteria
● Investigate

○ Interview different data scientists that work at Principal to gather information
about their coding practices.

○ Research example code and find commonalities between them.
● Prototype

○ Taking information we receive from the interview process and create a prototype.
● Test

○ Run prototyped code with real simulation code.
○ Test for bugs and errors in code.
○ Fix and adjust any problems with code.

● Final Project
○ Present final product to Principal executives.

2.1.12 Project Tracking Procedures
The project management systems we chose to utilize are Gitlab issues and GroupMe. Using
Gitlab issues allows us to track progress of specific tasks by allowing us to assign tasks and
establish deadlines to each individual. Gitlab Issues allow us to also review tasks at our
bi-weekly meetings and help keep all team members on the same page. We also chose to use
GroupMe for instant messaging which allows for quicker communication between group
members.

sdMay19-06 14

2.2 Statement of Work

2.2.1 Task Objective
Our objective for this project is to take data manipulation and prediction processes currently
used by our client and more easily connect them with an automated pipeline. These include the
splitting of training and testing data from a chronological set, normalization, non-linear feature
engineering, cross validation, model creation, and of course prediction. The training data must
be kept safe from contamination due to the temporal nature of the desired predictions. Our
project will allow data scientists to quickly and easily create and test models using a variety of
parameters and without needing to write boilerplate code or worry about errors in the data
manipulation processes.

2.2.2 Task Approach
After discussing several alternatives, the approach we’ve decided on is to create a pipeline
framework to meet our objective. The pipeline will provide hooks along with a standardized
system of inputs and outputs that allow users to plug in the scripts they’d like to use for testing
with little hassle. We’ll develop the pipeline using Python, a common data science language.

Strengths:

1. Python is a common general purpose language
2. Python is already used by some of the client’s employees
3. Easy to plug in and swap various components
4. Allows client to focus on developing modules instead of the whole process at once
5. Saves a lot of boilerplate code for users

Weaknesses:

1. High level of parameterization needed could require verbose function calls or object
initialization

2. Requires users to learn a new set of functions to interface with
3. May require current script inputs and outputs to be changed to conform to the standard

Overall we feel that the strengths of this approach outweigh the weaknesses, and that other
approaches aren’t significant improvements (See Section 2.2.3). While users will have to learn
the set of functions we provide, this is true for really any solution we come up with for
automating processes. Similarly, there may be significant explicit configuration required
resulting in verbose code, but this is again true for any approach that wants to provide that level
of customization.

sdMay19-06 15

On the other hand, Python is a powerful general purpose language with significant popularity in
data science. Additionally the library will be easily integratable into the client’s current workflow,
as it should simply replace large blocks of code with a single lines that have the pipeline do the
rest of the work. The only barrier here is for current script practices to conform to the new
standard. To ease the transition we’ll make sure to spend ample time developing an intuitive
standard that can integrate with current scripts without too much modification.

The pipeline will automate much of the testing process shown below in Figure 1. The processes
and connections between them will be run using function calls, while using user-defined scripts
at the chosen interfacing points. There are also points at which data can be accessed and
visualized if desired.

The internals of the library will make heavy use of the other libraries our client is already making
use of including numpy, pandas, sklearn, and matplotlib. Each of these already implements a lot
of very useful functionality, so our library will mainly be focused on combining them to perform
larger tasks.

Figure 1: Pipeline Process Diagram with Interface Hooks

sdMay19-06 16

2.2.3 Alternative Approaches
The following consist of several approaches we considered but eventually rejected in favor of
our current plan.

Standalone Application

One way we considered meeting our objective was by creating a standalone application that
could run various data manipulation processes through a UI. The user would feed data to the
application and choose the processes to be run on it. The UI would also allow for a significant
amount of custom configuration for users to adjust as needed.

Strengths:

1. Doesn’t require any coding to process data
2. Able to keep track of user preferences and state between sessions
3. Intuitive to use
4. Can easily save and reload models and results
5. Doesn’t require installation of dependencies
6. Doesn’t require user to use a particular language for other data manipulation

Weaknesses:

1. Difficult to feed results back into code
2. Unfamiliar concept for client’s employees
3. Additional functionality requires building more UI
4. Less platform independent
5. Doesn’t update along with packages automatically

We didn’t choose this approach mainly because our client wants the end product to be available
to many users easily and without a high learning curve. This application would require users to
learn an entirely new interface that doesn’t even mesh well with their existing workflows.
Normally data is passed almost exclusively through code, so adding an application that has to
import and export the data into the mix is somewhat awkward.

Browser Application

Another approach we considered was a browser application that could run all of the data
manipulation processes remotely. The user could upload data and choose processes to be run
on it. The application would provide a UI that could configure the processes as necessary.
These processes would then be run on a server and the results sent back to the user.

Strengths:

1. All processes can be run on a server with above average processing power and memory

sdMay19-06 17

2. Results can be saved remotely and shared with other users
3. Doesn’t require the user’s computer to be available while running
4. Doesn’t require coding to process data
5. Able to keep track of user preferences and state between sessions
6. Intuitive to use
7. Doesn’t require installation of dependencies
8. Doesn’t require user to use a particular language for other data manipulation

Weaknesses:

1. User must be online initially and to get the results
2. Big data must be uploaded and downloaded often
3. Difficult to feed results back into code
4. Unfamiliar concept for client’s employees
5. Additional functionality requires building more UI
6. Requires a server to be accessed from

Similar to the previous approach, the browser application was not chosen because of the
learning curve and adjustment to workflow required. With the added complication of uploading
and downloading the data, this approach could serious disrupt the flow of data without
significant benefits.

2.2.4 Expected Results
Once the project is complete, we expect to have a functioning Python pipeline that allows users
to test scripts modularly and to perform significant data manipulations such as engineering
nonlinear features, cross validation, or backtesting. This will be possible through a variety of
function calls made available to the user. By stringing a few of these calls together, we expect
the user to be able to create complex models able to predict responses based on the features
given.

The pipeline will be portable and easy to distribute. It will simply need to be added using a
package manager and then imported into the code to be used. Users can expect to be able to
use all the functionality immediately and with little hassle. The code will also be written
consistently and with maintainability in mind, allowing for new functionality to be added as
necessary in the future.

sdMay19-06 18

3 Testing and Implementation
There are primarily two parts to our plan to test our product: requirement testing and user
testing. The first will test each of the functional and non-functional requirements we have
defined for our deliverables, ensuring correctness of the algorithms, and adequate functionality
within its use context. The second will test our design and documentation for our users’
perceptions, ensuring that its use is intuitive and self-explanatory. Outcomes from either of
these test types could lead to reworking our product and retesting.

3.1 Requirements Testing
The primary goal of requirements testing is to ensure that our automation of tasks remains
correct (does not change the expected outputs for each simulation) and performs well within its
context.

3.1.1 Functional Testing

1. Compare 10+ runs of rolling window calculations between our solution and the previous
method, varying selectable parameters, including, but not limited to:

a. Window train size
b. Window test size
c. Buffer size
d. Predictive model / algorithm
e. Each run should produce the same result from legacy code to new solution

2. The user can observe the output of the tests run in at least one manner.

3. Augment varying amounts of additional data to a partially-constructed model and reverify

the model’s functionality. The model must still functions with 5+ trials.

4. Run simulations with different models provided by Principal, verifying the correctness of
their results.

5. Calculate each of the models individual performance to the performance threshold.

6. Calculate “factor policy” weight and assign to each factor.

7. Run 5+ simulations with data from each of FactSet and Bloomberg, verifying their results

sdMay19-06 19

3.1.2 Non-Functional Testing

1. Benchmark the runtimes of models in both old scripts and new scripts over tests for
functional requirements and ensure that the runtime for the new version isn’t longer
(within a threshold)

2. Run a simulation with a data set of 2-5 Gb and verify it finishes.
3. Run a simulation over data consisting of > 100 features and > 1,000,000 observations,

verifying that it completes.
4. Test with 6+ data scientists, getting feedback to ensure the product does save them

time.

3.2 Usability Testing
Usability testing is paramount to our project because if the product we produce isn’t intuitive and
convenient to use, it will defeat one of its primary purposes of saving our users time.

3.2.1 Process
To test our library’s usability, we will be putting it in the hands of data scientists, especially the
members of Principal’s team whom we interviewed at the onset of the project. We will ask them
both to use it in their typical tasks and, if necessary, to try it in contexts and tasks that would
more thoroughly test its functionality. After a fixed length of time testing our product, we will
meet with them to elicit their feedback.

3.3 Results
No testing has been done in our project so far.

4 Estimated Resources and Timeline

4.1 Estimated Resources

4.1.1 Personnel Effort Requirements
Each team member is expected to put in around 7 hours a week for this project. Each hour of
work needs to be filled with hard work and focus in order for this project to succeed.

sdMay19-06 20

4.1.2 Other Resource Requirements
Other resources needed for this project are: previous code from the team before us, examples
of the different tests they run, and examples of the data format.

4.1.3 Financial Requirements
Since this project is a software only project, there is no cost needed for hardware or any special
equipment. The data needed for the project is provided by Principal at no cost.

4.2 Project Timeline
Our timeline is divided up into 4 phases. The first phase being the planning phase, the second
the first prototype phase, the third being the third prototype phase, and the final phase being
testing/documentation.

Table 6: Gantt Chart Phase 1

Phase 1
The first phase of our project involved planning out the design and functionality of our project.
One of the most important parts in this phase was the interviewing the employees of Principal.
Due to the scope of the project being vague at the start, our team needed to decide the scope of
the project before anything could start. After the interviews, the rest of phase one is focused on
trying to create a concise design for our project.

As of the current time, we have successfully met all of the phase 1 goals. While planning the
design took a little longer than expected, the other parts went well so we managed to finish
phase 1 on time.

sdMay19-06 21

Table 7: Gantt Chart Phase 2

Phase 2
Phase 2 is where we start prototyping our design. Due to the nature of our project, the prototype
at this stage is focused on creating the unified pipelines for the first parts of the DRP 2.0.
Focusing on the data aggregation and data query parts, we will first create the prototype for
these components, constantly getting feedback from Principal and refining the project.

We are currently in phase 2. We are in the progress of creating the first part of the prototype. So
far we have created the first few modules in the DRP 2.0 diagram.

Table 8: Gantt Chart Phase 3

Phase 3
Phase 3 is the second phase of the prototype designs, focusing on the later parts of the DRP
2.0 processes. We will continue to focus on the creation of the unified pipeline here for the later
stages, and also work on the standardization of all the process in this phase too. Same as
phase 2, we will be in constant contact with Principal to continuing refining our prototype.
Towards the end of phase 3, we will work on bring all the different processes together in one
unified pipeline.

sdMay19-06 22

Table 9: Gantt Chart Part 4

Phase 4
Phase 4 is the testing and documentation phase. For the first part of phase 4, we will focus on
testing our unified pipeline to make sure it works as intended. After testing has finished, we will
work on documentation of the pipeline and how it works. If we have time towards the end of
phase 4, we will also focus on working together with Principal to teach our clients how to use
our product.

4.3 Work Breakdown Structure

Figure 2: Work Breakdown Structure

sdMay19-06 23

5 Closing Material

5.1 Conclusion
This project aims to help the data science teams at Principal Financial work at a more efficient
pace by providing a pipeline, creating a unified way of aggregating data and running models on
that data.

Our team will create a pipeline framework that will automate some of the tasks Principal’s Data
Science team already does to allow them to save time on their redundant tasks, and to further
streamline their work. This will allow for consistency and less mistakes in the process of
aggregating data, constructing, running, and using the output from those models.

In the first couple months of the project we interviewed multiple Principal employees, discussed
their preferred directions of the project, and spent time clearing up any confusion regarding the
details of the project. During the discussions with our client we were given multiple options for
our project. We decided to work on the DRP 2.0 pipeline to allow their different modules to
communicate and connect in an efficient manner. After completing a multitude of interviews and
meetings, we began working on the technical side of the project. Our team has currently
developed a function to retrieve specified stock data from the database and organize it into
portfolios defined by the user. This now allows the user to categorize and specify the stocks
they want through the parameters of a function instead of rewriting the code multiple times. An
R language wrapper was also created for our current functions so Data Scientists who are more
familiar with R can use our code effortlessly. We are currently in the process of setting up
Continuous Integration within gitlab to prevent us from breaking the project during our various
merges and pushes to the repository.

By continuing to follow the steps outlined in this proposal, we can provide a more versatile and
automated system of predictive stock analysis for the data science teams at Principal Financial.

sdMay19-06 24

5.2 References
[1] “Quantopian: The Place For Learning Quant Finance,” Quantopian. [Online]. Available:

https://www.quantopian.com/. [Accessed: 26-Nov-2018].

[2] M. Kuhn, “The caret Package,” Github Sites, 26-May-2018. [Online]. Available:

http://topepo.github.io/caret/index.html. [Accessed: 26-Nov-2018].

[3] “ISO/IEC/IEEE International Standard - Systems and software engineering -- Software

life cycle processes," in ISO/IEC/IEEE 12207:2017(E) First edition 2017-11, pp.1-157,
15 Nov. 2017

[4] “ISO/IEC/IEEE International Standard - Software and systems engineering--Software

testing--Part 4: Test techniques," in ISO/IEC/IEEE 29119-4:2015, pp.1-149, 8 Dec. 2015

[5] “IEEE Standard for System, Software, and Hardware Verification and Validation," in

IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE Std
1012-2016/Cor1-2017), pp.1-260, 29 Sept. 2017

